diff options
Diffstat (limited to 'src/client/util')
-rw-r--r-- | src/client/util/bezierFit.ts | 242 |
1 files changed, 112 insertions, 130 deletions
diff --git a/src/client/util/bezierFit.ts b/src/client/util/bezierFit.ts index 57c6dbbde..784bb2e18 100644 --- a/src/client/util/bezierFit.ts +++ b/src/client/util/bezierFit.ts @@ -1,5 +1,4 @@ import { Point } from "../../pen-gestures/ndollar"; -import { max } from "lodash"; class SmartRect { minx: number = 0; @@ -21,45 +20,38 @@ class SmartRect { public ContainsPercentage(other: SmartRect, axis: Point) { var ret = 0; - var minx = Math.max(other.TopLeft.X * axis.X + other.TopLeft.Y * axis.Y, this.TopLeft.X * axis.X + this.TopLeft.Y * axis.Y); - var maxx = Math.max(other.BotRight.X * axis.X + other.BotRight.Y * axis.Y, this.BotRight.X * axis.X + this.BotRight.Y * axis.Y); - ret = maxx > minx ? (maxx - minx) / (axis == new Point(1, 0) ? other.Width : other.Height) : 0; + const minx = Math.max(other.TopLeft.X * axis.X + other.TopLeft.Y * axis.Y, this.TopLeft.X * axis.X + this.TopLeft.Y * axis.Y); + const maxx = Math.max(other.BotRight.X * axis.X + other.BotRight.Y * axis.Y, this.BotRight.X * axis.X + this.BotRight.Y * axis.Y); + ret = maxx > minx ? (maxx - minx) / (axis === new Point(1, 0) ? other.Width : other.Height) : 0; return ret; } public static Bounds(p: Point[]) { - var r = new SmartRect(); + const r = new SmartRect(); if (p.length > 0) { r.minx = p[0].X; // These are the most likely to be extremal r.maxx = p.lastElement().X; r.miny = p[0].Y; r.maxy = p.lastElement().Y; - if (r.minx > r.maxx) { - var tmp = r.minx; - r.minx = r.maxx; - r.maxx = tmp; - } - if (r.miny > r.maxy) { - var tmp = r.miny; - r.miny = r.maxy; - r.maxy = tmp; - } + if (r.minx > r.maxx) [r.minx, r.maxx] = [r.maxx, r.minx]; + if (r.miny > r.maxy) [r.miny, r.maxy] = [r.maxy, r.miny]; - for (var pt of p) { - if (pt.X < r.minx) + for (const pt of p) { + if (pt.X < r.minx) { r.minx = pt.X; - else if (pt.X > r.maxx) + } else if (pt.X > r.maxx) { r.maxx = pt.X; - - if (pt.Y < r.miny) + } + if (pt.Y < r.miny) { r.miny = pt.Y; - else if (pt.Y > r.maxy) + } else if (pt.Y > r.maxy) { r.maxy = pt.Y; + } } } return r; } -}; +} function Normalize(p: Point) { const len = Math.sqrt(p.X * p.X + p.Y * p.Y); @@ -67,7 +59,7 @@ function Normalize(p: Point) { } function ReparameterizeBezier(d: Point[], first: number, last: number, u: number[], bezCurve: Point[]) { - var uPrime = new Array<number>(last - first + 1); // New parameter values + const uPrime = new Array<number>(last - first + 1); // New parameter values for (var i = first; i <= last; i++) { uPrime[i - first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i - first]); @@ -76,36 +68,36 @@ function ReparameterizeBezier(d: Point[], first: number, last: number, u: number } function ComputeMaxError(d: Point[], first: number, last: number, bezCurve: Point[], u: number[]) { var maxError = 0; // Maximum error - var splitPoint2D = (last - first + 1) / 2; for (var i = first + 1; i < last; i++) { - var P = [0, 0]; // point on curve + const P = [0, 0]; // point on curve EvalBezierFast(bezCurve, u[i - first], P); - var dx = P[0] - d[i].X;// offset from point to curve - var dy = P[1] - d[i].Y; - var dist = Math.sqrt(dx * dx + dy * dy); // Current error + const dx = P[0] - d[i].X;// offset from point to curve + const dy = P[1] - d[i].Y; + const dist = Math.sqrt(dx * dx + dy * dy); // Current error if (dist >= maxError) { maxError = dist; - if (splitPoint2D) + if (splitPoint2D) { splitPoint2D = i; + } } } return { maxError, splitPoint2D }; } function ChordLengthParameterize(d: Point[], first: number, last: number) { - var u = new Array<number>(last - first + 1);// Parameterization + const u = new Array<number>(last - first + 1);// Parameterization var prev = 0.0; u[0] = prev; for (var i = first + 1; i <= last; i++) { - var lastd = d[i - 1]; - var curd = d[i]; - var dx = lastd.X - curd.X; - var dy = lastd.Y - curd.Y; + const lastd = d[i - 1]; + const curd = d[i]; + const dx = lastd.X - curd.X; + const dy = lastd.Y - curd.Y; prev = u[i - first] = prev + Math.sqrt(dx * dx + dy * dy); } - var ulastfirst = u[last - first]; + const ulastfirst = u[last - first]; for (var i = first + 1; i <= last; i++) { u[i - first] /= ulastfirst; } @@ -116,12 +108,12 @@ function ChordLengthParameterize(d: Point[], first: number, last: number) { * B0, B1, B2, B3 : * Bezier multipliers */ -function B0(u: number) { var tmp = 1.0 - u; return tmp * tmp * tmp; } -function B1(u: number) { var tmp = 1.0 - u; return 3 * u * tmp * tmp; } -function B2(u: number) { var tmp = 1.0 - u; return 3 * u * u * tmp; } +function B0(u: number) { const tmp = 1.0 - u; return tmp * tmp * tmp; } +function B1(u: number) { const tmp = 1.0 - u; return 3 * u * tmp * tmp; } +function B2(u: number) { const tmp = 1.0 - u; return 3 * u * u * tmp; } function B3(u: number) { return u * u * u; } function bounds(p: Point[]) { - var r = new SmartRect(p[0].X, p[0].Y, p[3].X, p[3].Y); // These are the most likely to be extremal + const r = new SmartRect(p[0].X, p[0].Y, p[3].X, p[3].Y); // These are the most likely to be extremal if (r.minx > r.maxx) (r.minx, r.maxx); if (r.miny > r.maxy) [r.miny, r.maxy] = [r.maxy, r.miny]; // swap min & max @@ -137,10 +129,9 @@ function bounds(p: Point[]) { } - function splitCubic(p: Point[], t: number, left: Point[], right: Point[]) { - var sz = 4; - var Vtemp = new Array<Array<Point>>(4); + const sz = 4; + const Vtemp = new Array<Array<Point>>(4); for (var i = 0; i < 4; i++) Vtemp[i] = new Array<Point>(4); /* Copy control points */ @@ -153,8 +144,8 @@ function splitCubic(p: Point[], t: number, left: Point[], right: Point[]) { /* Triangle computation */ for (var i = 1; i < sz; i++) { for (var j = 0; j < sz - i; j++) { - var a = Vtemp[i - 1][j]; - var b = Vtemp[i - 1][j + 1]; + const a = Vtemp[i - 1][j]; + const b = Vtemp[i - 1][j + 1]; Vtemp[i][j].X = b.X * t + a.X * (1 - t); Vtemp[i][j].Y = b.Y * t + a.Y * (1 - t); // Vtemp[i][j] = Point2D::Lerp(Vtemp[i - 1][j], Vtemp[i - 1][j + 1], t); } @@ -214,14 +205,14 @@ function splitCubic(p: Point[], t: number, left: Point[], right: Point[]) { */ function recursively_intersect(a: Point[], t0: number, t1: number, deptha: number, b: Point[], u0: number, u1: number, depthb: number, parameters: number[][]) { if (deptha > 0) { - var a1 = new Array<Point>(4), a2 = new Array<Point>(4); + const a1 = new Array<Point>(4), a2 = new Array<Point>(4); splitCubic(a, 0.5, a1, a2); - var tmid = (t0 + t1) * 0.5; + const tmid = (t0 + t1) * 0.5; deptha--; if (depthb > 0) { - var b1 = new Array<Point>(4), b2 = new Array<Point>(4); + const b1 = new Array<Point>(4), b2 = new Array<Point>(4); splitCubic(b, 0.5, b1, b2); - var umid = (u0 + u1) * 0.5; + const umid = (u0 + u1) * 0.5; depthb--; if (SmartRect.Intersect(bounds(a1), bounds(b1))) { recursively_intersect(a1, t0, tmid, deptha, b1, u0, umid, depthb, parameters); @@ -247,9 +238,9 @@ function recursively_intersect(a: Point[], t0: number, t1: number, deptha: numbe } else { if (depthb > 0) { - var b1 = new Array<Point>(4), b2 = new Array<Point>(4); + const b1 = new Array<Point>(4), b2 = new Array<Point>(4); splitCubic(b, 0.5, b1, b2); - var umid = (u0 + u1) * 0.5; + const umid = (u0 + u1) * 0.5; depthb--; if (SmartRect.Intersect(bounds(a), bounds(b1))) { recursively_intersect(a, t0, t1, deptha, b1, u0, umid, depthb, parameters); @@ -260,20 +251,20 @@ function recursively_intersect(a: Point[], t0: number, t1: number, deptha: numbe } else // Both segments are fully subdivided; now do line segments { - var xlk = a[3].X - a[0].X; - var ylk = a[3].Y - a[0].Y; - var xnm = b[3].X - b[0].X; - var ynm = b[3].Y - b[0].Y; - var xmk = b[0].X - a[0].X; - var ymk = b[0].Y - a[0].Y; - var det = xnm * ylk - ynm * xlk; - if (1.0 + det == 1.0) { + const xlk = a[3].X - a[0].X; + const ylk = a[3].Y - a[0].Y; + const xnm = b[3].X - b[0].X; + const ynm = b[3].Y - b[0].Y; + const xmk = b[0].X - a[0].X; + const ymk = b[0].Y - a[0].Y; + const det = xnm * ylk - ynm * xlk; + if (1.0 + det === 1.0) { return; } else { - var detinv = 1.0 / det; - var s = (xnm * ymk - ynm * xmk) * detinv; - var t = (xlk * ymk - ylk * xmk) * detinv; + const detinv = 1.0 / det; + const s = (xnm * ymk - ynm * xmk) * detinv; + const t = (xlk * ymk - ylk * xmk) * detinv; if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0) || Number.isNaN(s) || Number.isNaN(t)) { return; } @@ -296,7 +287,7 @@ function EvalBezier(V: Point[], degree: number, t: number, result: number[]) { return; } - var Vtemp = [new Point(0, 0), new Point(0, 0), new Point(0, 0), new Point(0, 0)]; // Local copy of control points + const Vtemp = [new Point(0, 0), new Point(0, 0), new Point(0, 0), new Point(0, 0)]; // Local copy of control points /* Copy array */ for (var i = 0; i <= degree; i++) { @@ -317,14 +308,11 @@ function EvalBezier(V: Point[], degree: number, t: number, result: number[]) { } function EvalBezierFast(p: Point[], t: number, result: number[]) { - var n = 3; - var u: number, bc: number, tn: number, tmpX: number, tmpY: number; - u = 1.0 - t; - bc = 1; - tn = 1; - - tmpX = p[0].X * u; - tmpY = p[0].Y * u; + const n = 3; + const u = 1.0 - t; + var bc = 1, tn = 1; + var tmpX = p[0].X * u; + var tmpY = p[0].Y * u; tn = tn * t; bc = bc * (n - 1 + 1) / 1; tmpX = (tmpX + tn * bc * p[1].X) * u; @@ -342,22 +330,21 @@ function EvalBezierFast(p: Point[], t: number, result: number[]) { *Approximate unit tangents at endpoints and "center" of digitized curve */ function ComputeLeftTangent(d: Point[], end: number) { - var use = 1; - var tHat1 = new Point(d[end + use].X - d[end].X, d[end + use].Y - d[end].Y); + const use = 1; + const tHat1 = new Point(d[end + use].X - d[end].X, d[end + use].Y - d[end].Y); return Normalize(tHat1); } function ComputeRightTangent(d: Point[], end: number) { - var available = end; - var use = 1; - var tHat2 = new Point(d[end - use].X - d[end].X, d[end - use].Y - d[end].Y); + const use = 1; + const tHat2 = new Point(d[end - use].X - d[end].X, d[end - use].Y - d[end].Y); return Normalize(tHat2); } function ComputeCenterTangent(d: Point[], center: number) { - if (center == 0) { + if (center === 0) { return ComputeLeftTangent(d, center); } - var V1 = ComputeLeftTangent(d, center); // d[center] - d[center-1]; - var V2 = ComputeRightTangent(d, center); // d[center] - d[center + 1]; + const V1 = ComputeLeftTangent(d, center); // d[center] - d[center-1]; + const V2 = ComputeRightTangent(d, center); // d[center] - d[center + 1]; var tHatCenter = new Point((-V1.X + V2.X) / 2.0, (-V1.Y + V2.Y) / 2.0); if (tHatCenter === new Point(0, 0)) { tHatCenter = new Point(-V1.Y, -V1.X);// V1.Perp(); @@ -365,15 +352,15 @@ function ComputeCenterTangent(d: Point[], center: number) { return Normalize(tHatCenter); } function GenerateBezier(d: Point[], first: number, last: number, uPrime: number[], tHat1: Point, tHat2: Point, result: Point[] /* must be prealloacted to size 4 */) { - var nPts = last - first + 1; // Number of pts in sub-curve - var Ax = new Array<number>(nPts * 2);// Precomputed rhs for eqn //std::vector<Vector2D> A(nPts * 2); - var Ay = new Array<number>(nPts * 2);// Precomputed rhs for eqn //std::vector<Vector2D> A(nPts * 2); + const nPts = last - first + 1; // Number of pts in sub-curve + const Ax = new Array<number>(nPts * 2);// Precomputed rhs for eqn //std::vector<Vector2D> A(nPts * 2); + const Ay = new Array<number>(nPts * 2);// Precomputed rhs for eqn //std::vector<Vector2D> A(nPts * 2); /* Compute the A's */ for (var i = 0; i < nPts; i++) { - var uprime = uPrime[i]; - var b1 = B1(uprime); - var b2 = B2(uprime); + const uprime = uPrime[i]; + const b1 = B1(uprime); + const b2 = B2(uprime); Ax[i] = tHat1.X * b1; Ay[i] = tHat1.Y * b1; Ax[i + 1 * nPts] = tHat2.X * b2; @@ -381,44 +368,41 @@ function GenerateBezier(d: Point[], first: number, last: number, uPrime: number[ } /* Create the C and X matrices */ - var C = [[0, 0], [0, 0]]; - var df = d[first]; - var dl = d[last]; + const C = [[0, 0], [0, 0]]; + const df = d[first]; + const dl = d[last]; - var X = [0, 0]; // Matrix X + const X = [0, 0]; // Matrix X for (var i = 0; i < nPts; i++) { C[0][0] += Ax[i] * Ax[i] + Ay[i] * Ay[i]; //A[i+0*nPts].Dot(A[i+0*nPts]); C[0][1] += Ax[i] * Ax[i + nPts] + Ay[i] * Ay[i + nPts];//A[i+0*nPts].Dot(A[i+1*nPts]); C[1][0] = C[0][1]; C[1][1] += Ax[i + nPts] * Ax[i + nPts] + Ay[i + nPts] * Ay[i + nPts];// A[i+1*nPts].Dot(A[i+1*nPts]); - var uprime = uPrime[i]; - var b0plb1 = B0(uprime) + B1(uprime); - var b2plb3 = B2(uprime) + B3(uprime); - var df1 = d[first + i]; - var tmpX = df1.X - (df.X * b0plb1 + (dl.X * b2plb3)); - var tmpY = df1.Y - (df.Y * b0plb1 + (dl.Y * b2plb3)); + const uprime = uPrime[i]; + const b0plb1 = B0(uprime) + B1(uprime); + const b2plb3 = B2(uprime) + B3(uprime); + const df1 = d[first + i]; + const tmpX = df1.X - (df.X * b0plb1 + (dl.X * b2plb3)); + const tmpY = df1.Y - (df.Y * b0plb1 + (dl.Y * b2plb3)); X[0] += Ax[i] * tmpX + Ay[i] * tmpY; // A[i+0*nPts].Dot(tmp) X[1] += Ax[i + nPts] * tmpX + Ay[i + nPts] * tmpY; //A[i+1*nPts].Dot(tmp) } /* Compute the determinants of C and X */ - var det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1]; - var det_C0_X = C[0][0] * X[1] - C[0][1] * X[0]; - var det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1]; + const det_C0_C1 = (C[0][0] * C[1][1] - C[1][0] * C[0][1]) || (C[0][0] * C[1][1]) * 10e-12; + const det_C0_X = C[0][0] * X[1] - C[0][1] * X[0]; + const det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1]; /* Finally, derive alpha values */ - if (det_C0_C1 == 0.0) { - det_C0_C1 = (C[0][0] * C[1][1]) * 10e-12; - } - var alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1; - var alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1; + var alpha_l = (det_C0_C1 === 0) ? 0.0 : det_X_C1 / det_C0_C1; + var alpha_r = (det_C0_C1 === 0) ? 0.0 : det_C0_X / det_C0_C1; /* If alpha negative, use the Wu/Barsky heuristic (see text) */ /* (if alpha is 0, you get coincident control points that lead to * divide by zero in any subsequent NewtonRaphsonRootFind() call. */ - var segLength = Math.sqrt((df.X - dl.X) * (df.X - dl.X) + (df.Y - dl.Y) * (df.Y - dl.Y)); - var epsilon = 1.0e-6 * segLength; + const segLength = Math.sqrt((df.X - dl.X) * (df.X - dl.X) + (df.Y - dl.Y) * (df.Y - dl.Y)); + const epsilon = 1.0e-6 * segLength; if (alpha_l < epsilon || alpha_r < epsilon) { /* fall back on standard (probably inaccurate) formula, and subdivide further if needed. */ alpha_l = alpha_r = segLength / 3.0; @@ -432,15 +416,15 @@ function GenerateBezier(d: Point[], first: number, last: number, uPrime: number[ result[3] = dl; result[1] = new Point(df.X + (tHat1.X * alpha_l), df.Y + (tHat1.Y * alpha_l)); result[2] = new Point(dl.X + (tHat2.X * alpha_r), dl.Y + (tHat2.Y * alpha_r)); - } + /* * NewtonRaphsonRootFind : * Use Newton-Raphson iteration to find better root. */ function NewtonRaphsonRootFind(Q: Point[], P: Point, u: number) { - var Q1 = [new Point(0, 0), new Point(0, 0), new Point(0, 0)], Q2 = [new Point(0, 0), new Point(0, 0)]; // Q' and Q'' - var Q_u = [0, 0], Q1_u = [0, 0], Q2_u = [0, 0]; //u evaluated at Q, Q', & Q'' + const Q1 = [new Point(0, 0), new Point(0, 0), new Point(0, 0)], Q2 = [new Point(0, 0), new Point(0, 0)]; // Q' and Q'' + const Q_u = [0, 0], Q1_u = [0, 0], Q2_u = [0, 0]; //u evaluated at Q, Q', & Q'' /* Compute Q(u) */ var uPrime: number; // Improved u @@ -463,25 +447,24 @@ function NewtonRaphsonRootFind(Q: Point[], P: Point, u: number) { EvalBezier(Q2, 1, u, Q2_u); /* Compute f(u)/f'(u) */ - var numerator = (Q_u[0] - P.X) * (Q1_u[0]) + (Q_u[1] - P.Y) * (Q1_u[1]); - var denominator = (Q1_u[0]) * (Q1_u[0]) + (Q1_u[1]) * (Q1_u[1]) + (Q_u[0] - P.X) * (Q2_u[0]) + (Q_u[1] - P.Y) * (Q2_u[1]); - if (denominator == 0.0) + const numerator = (Q_u[0] - P.X) * (Q1_u[0]) + (Q_u[1] - P.Y) * (Q1_u[1]); + const denominator = (Q1_u[0]) * (Q1_u[0]) + (Q1_u[1]) * (Q1_u[1]) + (Q_u[0] - P.X) * (Q2_u[0]) + (Q_u[1] - P.Y) * (Q2_u[1]); + if (denominator === 0.0) { uPrime = u; - else uPrime = u - (numerator / denominator);/* u = u - f(u)/f'(u) */ + } else uPrime = u - (numerator / denominator);/* u = u - f(u)/f'(u) */ return uPrime; } function FitCubic(d: Point[], first: number, last: number, tHat1: Point, tHat2: Point, error: number, result: Point[]) { - var bezCurve = new Array<Point>(4); // Control points of fitted Bezier curve - var splitPoint2D: number; // Point2D to split point set at - var maxIterations = 4; // Max times to try iterating + const bezCurve = new Array<Point>(4); // Control points of fitted Bezier curve + const maxIterations = 4; // Max times to try iterating - var iterationError = error * error; // Error below which you try iterating - var nPts = last - first + 1; // Number of points in subset + const iterationError = error * error; // Error below which you try iterating + const nPts = last - first + 1; // Number of points in subset /* Use heuristic if region only has two points in it */ - if (nPts == 2) { - var dist = Math.sqrt((d[first].X - d[last].X) * (d[first].X - d[last].X) + (d[first].Y - d[last].Y) * (d[first].Y - d[last].Y)) / 3; + if (nPts === 2) { + const dist = Math.sqrt((d[first].X - d[last].X) * (d[first].X - d[last].X) + (d[first].Y - d[last].Y) * (d[first].Y - d[last].Y)) / 3; bezCurve[0] = d[first]; bezCurve[3] = d[last]; @@ -499,7 +482,7 @@ function FitCubic(d: Point[], first: number, last: number, tHat1: Point, tHat2: GenerateBezier(d, first, last, u, tHat1, tHat2, bezCurve); /* Find max deviation of points to fitted curve */ - var { maxError, splitPoint2D } = ComputeMaxError(d, first, last, bezCurve, u); // Maximum fitting error + const { maxError, splitPoint2D } = ComputeMaxError(d, first, last, bezCurve, u); // Maximum fitting error if (maxError < Math.abs(error)) { result.push(bezCurve[1]); result.push(bezCurve[2]); @@ -511,9 +494,9 @@ function FitCubic(d: Point[], first: number, last: number, tHat1: Point, tHat2: /* and iteration */ if (maxError < iterationError) { for (var i = 0; i < maxIterations; i++) { - var uPrime = ReparameterizeBezier(d, first, last, u, bezCurve); // Improved parameter values + const uPrime = ReparameterizeBezier(d, first, last, u, bezCurve); // Improved parameter values GenerateBezier(d, first, last, uPrime, tHat1, tHat2, bezCurve); - var { maxError, splitPoint2D } = ComputeMaxError(d, first, last, bezCurve, uPrime); + const { maxError } = ComputeMaxError(d, first, last, bezCurve, uPrime); if (maxError < error) { result.push(bezCurve[1]); result.push(bezCurve[2]); @@ -525,16 +508,15 @@ function FitCubic(d: Point[], first: number, last: number, tHat1: Point, tHat2: } /* Fitting failed -- split at max error point and fit recursively */ - var tHatCenter = splitPoint2D >= last - 1 ? ComputeRightTangent(d, splitPoint2D) : ComputeCenterTangent(d, splitPoint2D); + const tHatCenter = splitPoint2D >= last - 1 ? ComputeRightTangent(d, splitPoint2D) : ComputeCenterTangent(d, splitPoint2D); FitCubic(d, first, splitPoint2D, tHat1, tHatCenter, error, result); - var negThatCenter = new Point(-tHatCenter.X, -tHatCenter.Y); + const negThatCenter = new Point(-tHatCenter.X, -tHatCenter.Y); FitCubic(d, splitPoint2D, last, negThatCenter, tHat2, error, result); } export function FitCurve(d: Point[], error: number) { - var tHat1 = ComputeLeftTangent(d, 0); // Unit tangent vectors at endpoints - var tHat2 = ComputeRightTangent(d, d.length - 1); - var result: Point[] = []; - result.push(d[0]); + const tHat1 = ComputeLeftTangent(d, 0); // Unit tangent vectors at endpoints + const tHat2 = ComputeRightTangent(d, d.length - 1); + const result = [d[0]]; FitCubic(d, 0, d.length - 1, tHat1, tHat2, error, result); return result; } @@ -543,14 +525,14 @@ export function FitOneCurve(d: Point[], tHat1?: Point, tHat2?: Point) { tHat2 = tHat2 ?? Normalize(ComputeRightTangent(d, d.length - 1)); tHat2 = new Point(-tHat2.X, -tHat2.Y); var u = ChordLengthParameterize(d, 0, d.length - 1); - var bezCurveCtrls = [new Point(0, 0), new Point(0, 0), new Point(0, 0), new Point(0, 0)]; + const bezCurveCtrls = [new Point(0, 0), new Point(0, 0), new Point(0, 0), new Point(0, 0)]; GenerateBezier(d, 0, d.length - 1, u, tHat1, tHat2, bezCurveCtrls); /* Find max deviation of points to fitted curve */ var finalCtrls = bezCurveCtrls.slice(); var { maxError: error } = ComputeMaxError(d, 0, d.length - 1, bezCurveCtrls, u); for (var i = 0; i < 10; i++) { - var uPrime = ReparameterizeBezier(d, 0, d.length - 1, u, bezCurveCtrls); // Improved parameter values + const uPrime = ReparameterizeBezier(d, 0, d.length - 1, u, bezCurveCtrls); // Improved parameter values GenerateBezier(d, 0, d.length - 1, uPrime, tHat1, tHat2, bezCurveCtrls); - var { maxError } = ComputeMaxError(d, 0, d.length - 1, bezCurveCtrls, uPrime); + const { maxError } = ComputeMaxError(d, 0, d.length - 1, bezCurveCtrls, uPrime); if (maxError < error) { error = maxError; finalCtrls = bezCurveCtrls.slice(); |