import { ChatCompletionMessageParam } from 'openai/resources'; import { openai } from './setup'; import { ClientOptions, OpenAI } from 'openai'; export enum CustomizationType { PRES_TRAIL_SLIDE = 'trails', } export interface GeneratedResponse { collectionBackgroundColor: string; documentsWithColors: DocumentWithColor[]; } export interface DocumentWithColor { id: number; color: string; } export interface StyleInputDocument { id: number; textContent: string; textSize: number; } export interface StyleInput { collectionDescription: string; documents: StyleInputDocument[]; imageColors: string[]; } interface PromptInfo { description: string; features: { name: string; description: string; values?: string[] }[]; } const prompts: { [key: string]: PromptInfo } = { trails: { description: 'We are customizing the properties and transition of a slide in a presentation. You are given the current properties of the slide in a json with the fields [title, presentation_transition, presentation_effect, config_zoom, presentation_effectDirection], as well as the prompt for how the user wants to change it. Return a json with the required fields: [title, presentation_transition, presentation_effect, config_zoom, presentation_effectDirection] by applying the changes in the prompt to the current state of the slide.', features: [], }, }; export const addCustomizationProperty = (type: CustomizationType, name: string, description: string, values?: string[]) => { values ? prompts[type].features.push({ name, description, values }) : prompts[type].features.push({ name, description }); }; export const gptSlideProperties = ['title', 'presentation_transition', 'presentation_effect', 'presentation_effectDirection', 'config_zoom']; const setupPresSlideCustomization = () => { addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'title', 'is the title/name of the slide.'); addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'presentation_transition', 'is a number in milliseconds for how long it should take to transition/move to a slide.'); addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'presentation_effect', 'is an effect applied to the slide when we transition to it.', ['None', 'Fade in', 'Flip', 'Rotate', 'Bounce', 'Roll']); addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'presentation_effectDirection', 'is what direction the effect is applied.', ['Enter from left', 'Enter from right', 'Enter from bottom', 'Enter from Top', 'Enter from center']); addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'config_zoom', 'is a number from 0 to 1.0 indicating the percentage we should zoom into the slide.'); addCustomizationProperty( CustomizationType.PRES_TRAIL_SLIDE, 'presEffectTiming', "is a json object of the format: {type: string, stiffness: number, damping: number, mass: number}. Type is always “custom”. Controls the spring-based timing of the presentation effect animation. Stiffness, damping, and mass control the physics-based properties of spring animations. This is used to create a more natural looking timing, bouncy effects, etc. Use spring physics to adjust these parameters to match the user's description of how they want to animate the effect." ); }; setupPresSlideCustomization(); export const gptTrailSlideCustomization = async (inputText: string, properties: any) => { console.log('properties', properties); let prompt = prompts.trails.description; prompts.trails.features.forEach(feature => { prompt += feature.name + ' ' + feature.description; if (feature.values) { prompt += `Its only possible values are [${feature.values.join(', ')}].`; } }); // prompt += // 'title is the title/name of the slide. presentation_transition is a number in milliseconds for how long it should take to transition/move to a slide. presentation_effect is an effect applied to the slide when we transition to it. Its only possible values are: [None, Fade in, Flip, Rotate, Bounce, Roll]. presentation_effectDirection is what direction the effect is applied. Its only possible values are: [Enter from left, Enter from right, Enter from bottom, Enter from Top, Enter from center]. config_zoom is a number from 0 to 1.0 indicating the percentage we should zoom into the slide.'; prompt += 'Set unchanged values to null. Please only return the json with these keys and their values.'; console.log('messages', [ { role: 'system', content: prompt }, { role: 'user', content: `Prompt: ${inputText}, Current properties: ${JSON.stringify(properties)}` }, ]); try { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: [ { role: 'system', content: prompt }, { role: 'user', content: `Prompt: ${inputText}, Current properties: ${JSON.stringify(properties)}` }, ], temperature: 0, max_tokens: 1000, }); return response.choices[0].message?.content; } catch (err) { console.log(err); return 'Error connecting with API.'; } }; // layout export const smartLayout = async (inputData: { width: number; height: number }[]) => { let prompt = 'I want to layout documents in a 2d space in a nice, grid-like fashion with nice padding of about 50 units around each document, making sure they do not overlap. Given a json array of documents containing their width and heights in this form: {width: number, height: number}[], give me a json array in this form: {x: number, y: number}[] corresponding to the documents with a nice layout. Return just the json array.'; let messages: ChatCompletionMessageParam[] = [ { role: 'system', content: prompt }, { role: 'user', content: JSON.stringify(inputData) }, ]; console.log('Prompt: ', prompt); console.log('Messages: ', messages); try { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: messages, temperature: 0.01, max_tokens: 2000, }); const content = response.choices[0].message?.content; if (content) { return content; } return 'Malformed response.'; } catch (err) { console.log(err); return 'Error connecting with API.'; } }; // layout export const smartLayout2 = async (inputData: { width: number; height: number }[]) => { let prompt = 'I want to layout documents in a freeform 2d space in a masonry layout with a padding of around 50 units around each document. Take inspiration from existing UI grid and masonry layout design patterns. Make sure documents do not overlap. Given a json array of documents containing their width and heights in this form: {width: number, height: number}[], give me a json array in this form: {x: number, y: number}[] corresponding to the documents in the same order with the improved layout. Return just the json array.'; let messages: ChatCompletionMessageParam[] = [ { role: 'system', content: prompt }, { role: 'user', content: JSON.stringify(inputData) }, ]; console.log('Prompt: ', prompt); console.log('Messages: ', messages); try { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: messages, temperature: 0, max_tokens: 2000, }); const content = response.choices[0].message?.content; if (content) { return content; } return 'Malformed response.'; } catch (err) { console.log(err); return 'Error connecting with API.'; } }; // palette / styling export const generatePalette = async (inputData: StyleInput, useImageData: boolean, inputText: string, lastResponse?: GeneratedResponse[]) => { let prompt = 'Dash is a hypermedia web application that allows users to organize documents of different media types into collections. The user wants you to come up with cohesive color palettes for a collection.'; prompt += ' The user is going to give you a json object of this format:' + JSON.stringify({ collectionDescription: 'string', documents: 'Document[]', imageColors: 'string[]' }) + '. The user may follow by giving more specific instructions on what kind of palettes they want. collectionDescription is the title of the collection, which you should create color palettes based on. This is the document format:' + JSON.stringify({ id: 'number', textSize: 'number', textContent: 'string', }) + (useImageData ? '. Finally, imageColors are the main hex colors of the images in the collection.' : '. Ignore imageColors.') + 'You are going to generate three distinct variants of color palettes for the user to choose from based mostly on collectionDescription, and loosely on the text content and text size of the documents.' + (useImageData ? 'You should slightly take imageColors into account, but primarly focus on crafting a palette that matches the text content.' : '') + 'The variants should start with a light palette and grow increasingly more intense and vibrant. Return a json array of three objects in this format:' + JSON.stringify({ collectionBackgroundColor: 'string', documentsWithColors: 'DocumentWithColor[]', }) + '. collectionBackgroundColor, should be a string hex value for the background color of the collection. documentsWithColors has the same length and order of the input documents. DocumentWithColor has this format:' + JSON.stringify({ id: 'number', color: 'string', }) + ", and each element’s color is based on the theme of the overall color palette and also by its document’s textContent. Please pay attention to aesthetics of how each document's color complement the background and each other and choose a variety of colors when appropriate."; // enforce format prompt += 'Important: Respond with only the JSON array and no other text.'; // iteration let messages: ChatCompletionMessageParam[] = [ { role: 'system', content: prompt }, { role: 'user', content: JSON.stringify(inputData) }, ]; // continuing conversation if (lastResponse && inputText !== '') { messages.push({ role: 'assistant', content: JSON.stringify(lastResponse) }); messages.push({ role: 'user', content: 'Please modify the previously generated palettes with the following: ' + inputText }); } else if (inputText !== '') { messages.push({ role: 'user', content: inputText }); } console.log('Prompt: ', prompt); console.log('Messages: ', messages); try { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: messages, temperature: 0.1, max_tokens: 2000, }); const content = response.choices[0].message?.content; console.log(content); if (content) { return content; } return 'Malformed response.'; } catch (err) { console.log(err); return 'Error connecting with API.'; } };