diff options
author | sotech117 <michael_foiani@brown.edu> | 2024-04-05 21:21:58 -0400 |
---|---|---|
committer | sotech117 <michael_foiani@brown.edu> | 2024-04-05 21:21:58 -0400 |
commit | b61890af7b0b1d71aba534eb85ac40cef824cc95 (patch) | |
tree | b46f00e569ce47eac24160f94141458cf54fd8ae /src | |
parent | 0f8d0e3cfdbd9b11b2357ed3e1a11375e7af8e80 (diff) |
code
Diffstat (limited to 'src')
-rw-r--r-- | src/arap.cpp | 250 |
1 files changed, 249 insertions, 1 deletions
diff --git a/src/arap.cpp b/src/arap.cpp index 06b8829..4ba3bc8 100644 --- a/src/arap.cpp +++ b/src/arap.cpp @@ -6,6 +6,11 @@ #include <map> #include <vector> +#include <Eigen/Core> +#include <Eigen/Dense> +#include <Eigen/Sparse> +#include <Eigen/SVD> + using namespace std; using namespace Eigen; @@ -17,7 +22,7 @@ void ARAP::init(Eigen::Vector3f &coeffMin, Eigen::Vector3f &coeffMax) vector<Vector3i> triangles; // If this doesn't work for you, remember to change your working directory - if (MeshLoader::loadTriMesh("meshes/cactus.obj", vertices, triangles)) { + if (MeshLoader::loadTriMesh("meshes/sphere.obj", vertices, triangles)) { m_shape.init(vertices, triangles); } @@ -31,15 +36,258 @@ void ARAP::init(Eigen::Vector3f &coeffMin, Eigen::Vector3f &coeffMax) coeffMax = all_vertices.colwise().maxCoeff(); } + + // Move an anchored vertex, defined by its index, to targetPosition void ARAP::move(int vertex, Vector3f targetPosition) { std::vector<Eigen::Vector3f> new_vertices = m_shape.getVertices(); const std::unordered_set<int>& anchors = m_shape.getAnchors(); + std::cout << "anchors size" << anchors.size() << std::endl; + std::cout << "targetPosition" << targetPosition << std::endl; + // TODO: implement ARAP here new_vertices[vertex] = targetPosition; + // make a copy of the vertices into the matrix points + typedef Matrix<float, 3, Dynamic> PM; // position matrix + PM p(3, m_shape.getVertices().size()); + for (int i = 0; i < m_shape.getVertices().size(); ++i) + { + p.col(i) = m_shape.getVertices()[i]; + // p.col(i) = new_vertices[i]; + } + PM p_prime(3, m_shape.getVertices().size()); + for (int i = 0; i < m_shape.getVertices().size(); ++i) + { + p_prime.col(i) = new_vertices[i]; + } + + // compute the cotan weights + typedef Triplet<float> Tri; + vector<Tri> triplets; + triplets.reserve(3 * m_shape.getFaces().size()); + for (DenseIndex f = 0; f < m_shape.getFaces().size(); ++f) + { + Vector3i face = m_shape.getFaces()[f]; + Vector3f v0 = m_shape.getVertices()[face[0]]; + Vector3f v1 = m_shape.getVertices()[face[1]]; + Vector3f v2 = m_shape.getVertices()[face[2]]; + + Vector3f e0 = v1 - v0; + Vector3f e1 = v2 - v1; + Vector3f e2 = v0 - v2; + + // protect against degen triangles + float s0 = e0.squaredNorm(); + s0 = max(s0, 1e-8f); + float s1 = e1.squaredNorm(); + s1 = max(s1, 1e-8f); + float s2 = e2.squaredNorm(); + s2 = max(s2, 1e-8f); + + s0 = sqrt(s0); + s1 = sqrt(s1); + s2 = sqrt(s2); + + float semi_perimeter = (s0 + s1 + s2) * 0.5f; + float area = sqrt(semi_perimeter * (semi_perimeter - s0) * (semi_perimeter - s1) * (semi_perimeter - s2)); + area = max(area, 1e-8f); + + float cot0 = (-s0 * s0 + s1 * s1 + s2 * s2) / (4.0f * area); + cot0 = max(cot0, 1e-10f) * 0.5f; + float cot1 = (s0 * s0 - s1 * s1 + s2 * s2) / (4.0f * area); + cot1 = max(cot1, 1e-10f) * 0.5f; + float cot2 = (s0 * s0 + s1 * s1 - s2 * s2) / (4.0f * area); + cot2 = max(cot2, 1e-10f) * 0.5f; + + pair<int, int> edge0 = + face[0] > face[1] ? make_pair(face[1], face[0]) : make_pair(face[0], face[1]); + pair<int, int> edge1 = + face[1] > face[2] ? make_pair(face[2], face[1]) : make_pair(face[1], face[2]); + pair<int, int> edge2 = + face[2] > face[0] ? make_pair(face[0], face[2]) : make_pair(face[2], face[0]); + + triplets.push_back(Tri(edge0.first, edge0.second, cot0)); + triplets.push_back(Tri(edge1.first, edge1.second, cot1)); + triplets.push_back(Tri(edge2.first, edge2.second, cot2)); + triplets.push_back(Tri(edge0.second, edge0.first, cot0)); + triplets.push_back(Tri(edge1.second, edge1.first, cot1)); + triplets.push_back(Tri(edge2.second, edge2.first, cot2)); + } + // build the sparse matrix of edge weights + SparseMatrix<float, RowMajor> edge_weights(m_shape.getVertices().size(), m_shape.getVertices().size()); + edge_weights.reserve(VectorXi::Constant(m_shape.getVertices().size(), 7)); + edge_weights.setZero(); + edge_weights.setFromTriplets(triplets.begin(), triplets.end()); + + // initialize the rotation matrices + typedef Matrix<float, 3, 3> R; + // TODO: move this to only init once + vector<R> rotations(m_shape.getVertices().size(), R::Identity(3, 3)); +// rotations.clear(); +// rotations.resize(m_shape.getVertices().size(), R::Identity(3, 3)); + + // make a map that reduces the constrained vertices (vtx -> free vtx) + vector<Index> vtx_to_free_vtx = vector<Index>(m_shape.getVertices().size(), -1); + // vtx_to_free_vtx.reserve(m_shape.getVertices().size()); + Index count_free = 0; + for (int i = 0; i < m_shape.getVertices().size(); ++i) + { + if (!anchors.contains(i)) + { + // if were not an anchor, we are free + vtx_to_free_vtx[i] = count_free; + count_free++; + } + } + + // update pprime with the constraints into the linear system + for (Index i = 0; i < m_shape.getVertices().size(); ++i) + { + if (vtx_to_free_vtx[i] == -1) + { + // if we're an anchor, set this position + p_prime.col(i) = new_vertices[i]; + } + } + + // setup the linear system we will use to solve + SparseMatrix<float, RowMajor> L(count_free, count_free); + // L.resize(count_free, count_free); + L.reserve(VectorXi::Constant(count_free, 7)); + L.setZero(); + + // setup bfixed + PM b_fixed = PM::Zero(3, count_free); + // b_fixed.resize(3, count_free); + + // make the L matrix using triplet method + vector<Tri> triplets_L; + triplets_L.reserve(7 * count_free); + for (Index i = 0; i < edge_weights.outerSize(); i++) + { + Index free_index = vtx_to_free_vtx[i]; + if (free_index == -1) + { + // do not add constraints to the linear system + continue; + } + + for (SparseMatrix<float, RowMajor>::InnerIterator it(edge_weights, i); it; ++it) + { + Index j = it.col(); + Index free_index_j = vtx_to_free_vtx[j]; + float wij = it.value(); + if (free_index_j == -1) + { + // if the neighbor is an anchor, add to b_fixed + Vector3f location = new_vertices[j]; + b_fixed.col(free_index) += wij * location; + } + else + { + triplets_L.push_back(Tri(free_index, free_index_j, -wij)); + } + triplets_L.push_back(Tri(free_index, free_index, wij)); + } + } + // create and solve the L matrix + L.setFromTriplets(triplets_L.begin(), triplets_L.end()); + SimplicialLDLT<SparseMatrix<float>> solver; + solver.compute(L); + + for (int iter = 0; iter < 5; iter++) + { + // estimate the rotations + rotations.clear(); + rotations.resize(m_shape.getVertices().size(), R::Identity(3, 3)); + typedef Matrix<float, 3, 3> S; + for (Index i = 0; i < edge_weights.outerSize(); ++i) + { + const auto &pi = p.col(i); + const auto &ppi = p_prime.col(i); + S cov = S::Zero(3, 3); + + for (SparseMatrix<float, RowMajor>::InnerIterator it(edge_weights, i); it; ++it) + { + // get the weight + float wij = it.value(); + + // get the neighbor vertex + const auto &pj = p.col(it.col()); + const auto &ppj = p_prime.col(it.col()); + + Vector3f d = pi - pj; + Vector3f dp = ppi - ppj; + + cov += wij * d * (dp.transpose()); + } + + JacobiSVD<S> svd(cov, ComputeFullU | ComputeFullV); + const S &v = svd.matrixV(); + const S u_trans = svd.matrixU().transpose(); + + S I = S::Identity(3, 3); + I(2, 2) = (v * u_trans).determinant(); + rotations[i] = v * I * u_trans; + } + + // estimate the positions + // make a copy of b_fixed to modify + PM b = b_fixed; + for (Index i = 0; i < edge_weights.outerSize(); ++i) + { + // TODO add constraint check here + Index free_index = vtx_to_free_vtx[i]; + if (free_index == -1) + { + // do not consider constraints + continue; + } + + for (SparseMatrix<float, RowMajor>::InnerIterator it(edge_weights, i); it; ++it) + { + // get the weight + float wij = it.value(); + + // get the rotation matrices for the vertices + const S &R = rotations[i]; + const S &Rj = rotations[it.col()]; + + // calculate the energy + Eigen::Matrix<float, 3, 1> pt = (R + Rj) * (p.col(i) - p.col(it.col())); + pt *= wij * 0.5f; + b.col(free_index) += pt; + } + } + + // solve the linear system for each dimension + Matrix<float, Dynamic, 1> U; + for (int j = 0; j < 3; ++j) + { + U = solver.solve(b.row(j).transpose()); + + Index idx = 0; + for (int k = 0; k < m_shape.getVertices().size(); ++k) + { + if (vtx_to_free_vtx[k] != -1) + { + p_prime(j, k) = U(idx); + idx++; + } + } + } + } + + + // update the vertices with pprime + for (int i = 0; i < m_shape.getVertices().size(); ++i) + { + new_vertices[i] = p_prime.col(i); + } + // Here are some helpful controls for the application // // - You start in first-person camera mode |