aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--__pycache__/hyperparameters.cpython-38.pycbin369 -> 344 bytes
-rw-r--r--__pycache__/losses.cpython-38.pycbin4473 -> 4664 bytes
-rw-r--r--content.jpgbin0 -> 45172 bytes
-rw-r--r--data/content.jpegbin0 -> 68587 bytes
-rw-r--r--data/extratrain/otto.jpegbin0 -> 50249 bytes
-rw-r--r--data/extratrain/star.jpegbin0 -> 540085 bytes
-rw-r--r--data/style.jpegbin0 -> 65581 bytes
-rw-r--r--hyperparameters.py8
-rw-r--r--losses.py49
-rw-r--r--main.py7
-rw-r--r--save.jpgbin30377 -> 19949 bytes
-rw-r--r--style.jpgbin0 -> 43386 bytes
12 files changed, 44 insertions, 20 deletions
diff --git a/__pycache__/hyperparameters.cpython-38.pyc b/__pycache__/hyperparameters.cpython-38.pyc
index 11bc2070..12ab00e4 100644
--- a/__pycache__/hyperparameters.cpython-38.pyc
+++ b/__pycache__/hyperparameters.cpython-38.pyc
Binary files differ
diff --git a/__pycache__/losses.cpython-38.pyc b/__pycache__/losses.cpython-38.pyc
index d583a985..d25c70d0 100644
--- a/__pycache__/losses.cpython-38.pyc
+++ b/__pycache__/losses.cpython-38.pyc
Binary files differ
diff --git a/content.jpg b/content.jpg
new file mode 100644
index 00000000..163629cd
--- /dev/null
+++ b/content.jpg
Binary files differ
diff --git a/data/content.jpeg b/data/content.jpeg
new file mode 100644
index 00000000..398d20ea
--- /dev/null
+++ b/data/content.jpeg
Binary files differ
diff --git a/data/extratrain/otto.jpeg b/data/extratrain/otto.jpeg
new file mode 100644
index 00000000..9dbb4461
--- /dev/null
+++ b/data/extratrain/otto.jpeg
Binary files differ
diff --git a/data/extratrain/star.jpeg b/data/extratrain/star.jpeg
new file mode 100644
index 00000000..106713da
--- /dev/null
+++ b/data/extratrain/star.jpeg
Binary files differ
diff --git a/data/style.jpeg b/data/style.jpeg
new file mode 100644
index 00000000..0c4015df
--- /dev/null
+++ b/data/style.jpeg
Binary files differ
diff --git a/hyperparameters.py b/hyperparameters.py
index 63e51b91..75528742 100644
--- a/hyperparameters.py
+++ b/hyperparameters.py
@@ -9,17 +9,17 @@ Number of epochs. If you experiment with more complex networks you
might need to increase this. Likewise if you add regularization that
slows training.
"""
-num_epochs = 100
+num_epochs = 500
"""
A critical parameter that can dramatically affect whether training
succeeds or fails. The value for this depends significantly on which
optimizer is used. Refer to the default learning rate parameter
"""
-learning_rate = 3e-2
+learning_rate = 1e2
momentum = 0.01
-alpha = 1e-5
+alpha = 1
-beta = 1e-2
+beta = 100
diff --git a/losses.py b/losses.py
index 8c142f86..51f387a4 100644
--- a/losses.py
+++ b/losses.py
@@ -1,27 +1,40 @@
import tensorflow as tf
+import numpy as np
from tensorflow.keras.layers import \
Conv2D, AveragePooling2D
from skimage import transform
import hyperparameters as hp
+
class YourModel(tf.keras.Model):
""" Your own neural network model. """
def __init__(self, content_image, style_image): #normalize these images to float values
super(YourModel, self).__init__()
- self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True)
+ self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True, preserve_range=True).astype('uint8')
self.content_image = tf.expand_dims(self.content_image, axis=0)
-
+ print(self.content_image)
+
#perhaps consider cropping to avoid distortion
- self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True)
+ self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True, preserve_range=True).astype('uint8')
self.style_image = tf.expand_dims(self.style_image, axis=0)
- self.x = tf.Variable(tf.expand_dims(tf.random.uniform(tf.shape(content_image)), axis=0), trainable=True)
+ #self.x = tf.Variable(initial_value = self.content_image.numpy().astype(np.float32), trainable=True)
+ self.x = tf.Variable(initial_value = np.random.rand(self.content_image.shape[0],
+ self.content_image.shape[1], self.content_image.shape[2], self.content_image.shape[3]).astype('uint8'), trainable=True)
+
self.alpha = hp.alpha
self.beta = hp.beta
- print(self.content_image.shape, self.style_image.shape)
+ self.photo_layers = None
+ self.art_layers = None
+
- self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=hp.learning_rate, momentum=hp.momentum)
+
+ #(self.x.shape)
+
+ #print(self.content_image.shape, self.style_image.shape)
+
+ self.optimizer = tf.keras.optimizers.Adam(hp.learning_rate)
self.vgg16 = [
# Block 1
@@ -86,17 +99,25 @@ class YourModel(tf.keras.Model):
return x, layers
def loss_fn(self, p, a, x):
- _, photo_layers = self.call(p)
- _, art_layers = self.call(a)
- _, input_layers = self.call(x)
-
- content_l = self.content_loss(photo_layers, input_layers)
- style_l = self.style_loss(art_layers, input_layers)
+ # print(p)
+ if(self.photo_layers == None):
+ _, self.photo_layers = self.call(p)
+ # print(a)
+ if(self.art_layers == None):
+ _, self.art_layers = self.call(a)
+ # print(x)
+ _, input_layers = self.call(x)
+
+
+ content_l = self.content_loss(self.photo_layers, input_layers)
+ style_l = self.style_loss(self.art_layers, input_layers)
# Equation 7
- return (self.alpha * content_l) + (self.beta * style_l)
+ print('style_loss', style_l)
+ print('content_loss', content_l)
+ return (self.alpha * content_l) + (self.beta * style_l)
def content_loss(self, photo_layers, input_layers):
- L_content = tf.constant(0.0)
+ L_content = tf.constant(0.0).astype('uint8')
for i in range(len(photo_layers)):
pl = photo_layers[i]
il = input_layers[i]
diff --git a/main.py b/main.py
index b7d9a1e0..2d8c216a 100644
--- a/main.py
+++ b/main.py
@@ -1,7 +1,9 @@
import os
import sys
import argparse
+
import tensorflow as tf
+from skimage import transform
import hyperparameters as hp
from losses import YourModel
@@ -37,7 +39,8 @@ def parse_args():
return parser.parse_args()
def train(model):
- for _ in range(hp.num_epochs):
+ for i in range(hp.num_epochs):
+ print('batch', i)
model.train_step()
def main():
@@ -51,7 +54,7 @@ def main():
content_image = imread(ARGS.content)
style_image = imread(ARGS.style)
- style_image = transform.resize(style_image, content_image.shape)
+ style_image = transform.resize(style_image, content_image.shape).astype('uint8')
my_model = YourModel(content_image=content_image, style_image=style_image)
my_model.vgg16.build([1, 255, 255, 3])
my_model.vgg16.load_weights('vgg16_imagenet.h5', by_name=True)
diff --git a/save.jpg b/save.jpg
index 3cd65111..e35f2cbf 100644
--- a/save.jpg
+++ b/save.jpg
Binary files differ
diff --git a/style.jpg b/style.jpg
new file mode 100644
index 00000000..105ac2d1
--- /dev/null
+++ b/style.jpg
Binary files differ