aboutsummaryrefslogtreecommitdiff
path: root/losses.py
diff options
context:
space:
mode:
Diffstat (limited to 'losses.py')
-rw-r--r--losses.py13
1 files changed, 6 insertions, 7 deletions
diff --git a/losses.py b/losses.py
index 0128749a..f4a4f757 100644
--- a/losses.py
+++ b/losses.py
@@ -1,6 +1,6 @@
import tensorflow as tf
from tensorflow.keras.layers import \
- Conv2D, MaxPool2D, Dropout, Flatten, Dense
+ Conv2D, MaxPool2D, Dropout, Flatten, Dense, AveragePool2D
import numpy as np
import hyperparameters as hp
@@ -21,13 +21,13 @@ class YourModel(tf.keras.Model):
activation="relu", name="block1_conv1"),
Conv2D(64, 3, 1, padding="same",
activation="relu", name="block1_conv2"),
- MaxPool2D(2, name="block1_pool"),
+ AveragePool2D(2, name="block1_pool"),
# Block 2
Conv2D(128, 3, 1, padding="same",
activation="relu", name="block2_conv1"),
Conv2D(128, 3, 1, padding="same",
activation="relu", name="block2_conv2"),
- MaxPool2D(2, name="block2_pool"),
+ AveragePool2D(2, name="block2_pool"),
# Block 3
Conv2D(256, 3, 1, padding="same",
activation="relu", name="block3_conv1"),
@@ -35,7 +35,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block3_conv2"),
Conv2D(256, 3, 1, padding="same",
activation="relu", name="block3_conv3"),
- MaxPool2D(2, name="block3_pool"),
+ AveragePool2D(2, name="block3_pool"),
# Block 4
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block4_conv1"),
@@ -43,7 +43,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block4_conv2"),
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block4_conv3"),
- MaxPool2D(2, name="block4_pool"),
+ AveragePool2D(2, name="block4_pool"),
# Block 5
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block5_conv1"),
@@ -51,7 +51,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block5_conv2"),
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block5_conv3"),
- MaxPool2D(2, name="block5_pool"),
+ AveragePool2D(2, name="block5_pool"),
]
self.head = [
@@ -131,4 +131,3 @@ class YourModel(tf.keras.Model):
L_style += self.layer_loss(art_layers, input_layers, layer)
return L_style
-