diff options
Diffstat (limited to 'hw5/HarmonicOscillator.jl')
-rw-r--r-- | hw5/HarmonicOscillator.jl | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/hw5/HarmonicOscillator.jl b/hw5/HarmonicOscillator.jl new file mode 100644 index 0000000..adfaff8 --- /dev/null +++ b/hw5/HarmonicOscillator.jl @@ -0,0 +1,71 @@ +#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia + +# Simulate anharmonic oscillator that may be damped and driven + +using Plots # for plotting trajectory +using DifferentialEquations # for solving ODEs + +ω0 = 1.0 # ω0^2 = k/m +β = 0.0 # β = b/m = friction +c = 10.0 # anharmonic term +f = 0.3 # forcing amplitude +ω = 2.0 # forcing frequency +param = (ω0, β, c, f, ω) # parameters of anharmonic oscillator + +function tendency!(dxp::Vector{Float64}, xp::Vector{Float64}, param, t::Float64) + + (x, p) = xp # 2d phase space + + (ω0, β, c, f, ω) = param + + a = -ω0^2 * x - β * p - c * x^3 + f * forcing(t, ω) # acceleration with m = 1 + + dxp[1] = p + dxp[2] = a + +end + +function forcing(t::Float64, ω::Float64) + + return cos(ω * t) + +end + +function energy(xp::Vector{Float64}, param) + + (x, p) = xp + + (ω0, β, c, f, ω) = param + + pe = 0.5 * ω0^2 * x^2 + (c/4.0) * x^4 + ke = 0.5 * p^2 + + return pe + ke + +end + +x0 = 0.0 # initial position in meters +p0 = 0.0 # initial velocity in m/s +xp0 = [x0, p0] # initial condition in phase space +t_final = 100.0 # final time of simulation + +tspan = (0.0, t_final) # span of time to simulate + +prob = ODEProblem(tendency!, xp0, tspan, param) # specify ODE +sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8) # solve using Tsit5 algorithm to specified accuracy + +sample_times = sol.t +println("\n\t Results") +println("final time = ", sample_times[end]) +println("Initial energy = ", energy(sol[:,1], param)) +println("Final energy = ", energy(sol[:, end], param)) + +(ω0, β, c, f, ω) = param + +# Plot of position vs. time +xt = plot(sample_times, [sol[1, :] f * forcing.(sample_times, ω)], xlabel = "t", ylabel = "x(t)", legend = false, title = "x vs. t") + +# Phase space plot +xp = plot(sol[1, :], sol[2, :], xlabel = "x", ylabel = "p", legend = false, title = "phase space") + +plot(xt, xp)
\ No newline at end of file |