# FOR PROBLEM 3.12 # author: sotech117 #!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia # Simulate driven pendulum to find chaotic regime using Plots # for plotting trajectory using DifferentialEquations # for solving ODEs ω0 = 1.0 # ω0^2 = g/l β = 0.5 # β = friction f = 1.2 # forcing amplitude ω = .66667 # forcing frequency param = (ω0, β, f, ω) # parameters of anharmonic oscillator function tendency!(dθp::Vector{Float64}, θp::Vector{Float64}, param, t::Float64) (θ, p) = θp # 2d phase space (dθ, dp) = dθp # 2d phase space derviatives (ω0, β, f, ω) = param a = -ω0^2 * sin(θ) - β * dθ + f * forcing(t, ω) # acceleration with m = 1 dθp[1] = p dθp[2] = a end function forcing(t::Float64, ω::Float64) return sin(ω * t) end function energy(θp::Vector{Float64}, param) (θ, p) = θp (ω0, β, f, ω) = param pe = ω0^2 * (1.0 - cos(θ)) ke = 0.5 * p^2 return pe + ke end # take a list and reduce theta to the interval [-π, π] function clean_θ(θ::Vector{Float64}) rθ = [] for i in 1:length(θ) tmp = θ[i] % (2 * π) if tmp > π tmp = tmp - 2 * π elseif tmp < -π tmp = tmp + 2 * π end push!(rθ, tmp) end return rθ end function get_poincare_sections(sample_θ, sample_p, sample_t, Ω_d, ϵ::Float64, phase_shift=0.0::Float64) n = 0 poincare_θ = [] poincare_p = [] for i in 1:length(sample_θ) if abs(sample_t[i] * Ω_d - (2 * π * n + phase_shift)) < ϵ / 2 push!(poincare_θ, sample_θ[i]) push!(poincare_p, sample_p[i]) n += 1 end end return (poincare_θ, poincare_p) end θ0 = 0.2 # initial position in meters p0 = 0.0 # initial velocity in m/s θp0 = [θ0, p0] # initial condition in phase space t_final = 1000.0 # final time of simulation tspan = (0.0, t_final) # span of time to simulate prob = ODEProblem(tendency!, θp0, tspan, param) # specify ODE sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy sample_times = sol.t println("\n\t Results") println("final time = ", sample_times[end]) println("Initial energy = ", energy(sol[:,1], param)) println("Final energy = ", energy(sol[:, end], param)) (ω0, β, f, ω) = param # Plot of position vs. time # θt = plot(sample_times, [sol[1, :], f * forcing.(sample_times, ω)], xlabel = "t", ylabel = "θ(t)", legend = false, title = "θ vs. t") # Phase space plot cleaned = clean_θ(sol[1, :]) θp = scatter(cleaned, sol[2, :], xlabel = "θ (radians)", ylabel = "ω (radians/s)", legend = false, title = "Phase Space Plot", mc=:black, ms=.35, ma=1) # plot the poincare sections (poincare_θ, pointcare_p) = get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1) s1 = scatter(poincare_θ, pointcare_p, xlabel = "θ (radians)", ylabel = "ω (radians/s)", label="2nπ", title = "Poincare Sections", mc=:red, ms=2, ma=0.75) s2 = scatter(get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1, π / 2.0), mc=:blue, ms=2, ma=0.75, label="2nπ + π/2", title="Poincare Sections", xlabel = "θ (radians)", ylabel = "ω (radians/s)", legend=:bottomleft) s3 = scatter(get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1, π / 4.0), mc=:green, ms=2, ma=0.75, label="2nπ + π/4", title="Poincare Sections", xlabel = "θ (radians)", ylabel = "ω (radians/s)") plot(θp, s1, s2, s3)