# FOR PHYS2600 HW3 # author: sotech117 using DifferentialEquations using Plots g = 9.8 t_span = (0.0, 1000.0) p = g function tendency!(du, u, p, t) q_1, q_2, p_1, p_2 = u g = p denominator = 1.0 + (sin(q_1 - q_2)*sin(q_1 - q_2)) dq_1 = (p_1 - p_2 * cos(q_1 - q_2)) / denominator dq_2 = (-p_1*cos(q_1 - q_2) + 2*p_2) / denominator k_1 = p_1*p_2*sin(q_1 - q_2) / denominator k_2 = (p_1*p_1 + 2*p_2*p_2 - 2*p_1*p_2*cos(q_1 - q_2)) / (2*denominator*denominator) dp_1 = -2 * sin(q_1) - k_1 + k_2 * sin(2*(q_1 - q_2)) dp_2 = - sin(q_2) + k_1 - k_2 * sin(2*(q_1 - q_2)) du[1] = dq_1 du[2] = dq_2 du[3] = dp_1 du[4] = dp_2 end function energy(u, p) q_1, q_2, p_1, p_2 = u g = p T = 0.5 * (p_1*p_1 + p_2*p_2) V = - 2 * cos(q_1) - cos(q_2) return T + V end function build_ensemble(q_start, q_end, p_start, p_end, n) q_1s = zeros(n) q_2s = zeros(n) p_1s = zeros(n) p_2s = zeros(n) for i in 1:n q_1s[i] = q_start + (q_end - q_start) * rand() q_2s[i] = q_start + (q_end - q_start) * rand() p_1s[i] = p_start + (p_end - p_start) * rand() p_2s[i] = p_start + (p_end - p_start) * rand() end return [q_1s, q_2s, p_1s, p_2s] end # take a list and reduce theta to the interval [-π, π] function clean_θ(θ::Vector{Float64}) rθ = [] for i in 1:length(θ) tmp = θ[i] % (2 * π) if tmp > π tmp = tmp - 2 * π elseif tmp < -π tmp = tmp + 2 * π end push!(rθ, tmp) end return rθ end function run_simulation(u_0, tspan, p) prob = ODEProblem(tendency!, u_0, tspan, p) sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8) # control simulation sol[1, :] = clean_θ(sol[1, :]) sol[2, :] = clean_θ(sol[2, :]) return sol end # returns the new ensemble after t_span time function simulate_ensembles(ensemble, tspan, p) q_1s = zeros(length(ensemble[1])) q_2s = zeros(length(ensemble[2])) p_1s = zeros(length(ensemble[3])) p_2s = zeros(length(ensemble[4])) println("length ensemble = ", length(ensemble[1])) for i in 1:length(ensemble[1]) u_0 = [ensemble[1][i], ensemble[2][i], ensemble[3][i], ensemble[4][i]] sol = run_simulation(u_0, tspan, p) q_1s[i] = sol[1, end] q_2s[i] = sol[2, end] p_1s[i] = sol[3, end] p_2s[i] = sol[4, end] end println("q1_s", length(q_1s)) return [q_1s, q_2s, p_1s, p_2s] end function sum_all_positions_and_momenta(ensemble) q_1 = 0 q_2 = 0 p_1 = 0 p_2 = 0 for i in 1:length(ensemble[1]) q_1 += ensemble[1][i] q_2 += ensemble[2][i] p_1 += ensemble[3][i] p_2 += ensemble[4][i] end return [q_1, q_2, p_1, p_2] end function estimate_phase_space_volume(ensemble, n) # make 100000 random points in the 4d phase space from [-pi, pi] x [-pi, pi] x [-3, 3] x [-3, 3] points = build_ensemble(-pi, pi, -3, 3, 100000) # iterate over the points and find the number of points that hit the ensemble count = 0 for i in 1:length(points[1]) for j in 1:length(ensemble[1]) if abs(points[1][i] - ensemble[1][j]) < n && abs(points[2][i] - ensemble[2][j]) < n && abs(points[3][i] - ensemble[3][j]) < n && abs(points[4][i] - ensemble[4][j]) < n count += 1 break end end end # return the volume return (count / 100000) # note units don't matter, just comparing end # PROBLEM 1 -> show that two systems with the same intial energy can have different chaotic results u_1_0 = [0, 0, 6.26, 0.0] u_2_0 = [0.0, 0.0, 0.0, 6.26] # print the initial energies println("energy 1 = ", energy(u_1_0, p)) println("energy 2 = ", energy(u_2_0, p)) sol_1 = run_simulation(u_1_0, t_span, p) sol_2 = run_simulation(u_2_0, t_span, p) # plot the phase space p1 = scatter(sol_1[1, :], sol_1[3, :], label="q_1", xlabel="q_1 (radians)", ylabel="p_1 (momentum)", title="Phase Space i=1 for Pendulum 1", legend=false, color=:blue, msw=0, ms=.75) p2 = scatter(sol_2[1, :], sol_2[3, :], label="q_2", xlabel="q_1 (radians)", ylabel="p_1 (momentum)", title="Phase Space i=1 for Pendulum 2", legend=false, color=:red, msw=0, ms=.75) # plot the other phase space p3 = scatter(sol_1[2, :], sol_1[4, :], label="q_1", xlabel="q_2 (radians)", ylabel="p_2 (momentum)", title="Phase Space i=2 for Pendulum 1", legend=false, color=:blue, msw=0, ms=.75) p4 = scatter(sol_2[2, :], sol_2[4, :], label="q_2", xlabel="q_2 (radians)", ylabel="p_2 (momentum)", title="Phase Space i=2 for Pendulum 2", legend=false, color=:red, msw=0, ms=.75) # plot the trajectories p5 = scatter(sol_1[1, :], sol_1[2, :], label="q_1 (radians)", xlabel="q_1 (radians)", ylabel="q_2 (radians)", title="Relative Trajectory for Pend1", legend=false, color=:blue, msw=0, ms=.75) p6 = scatter(sol_2[1, :], sol_2[2, :], label="q_2 (radians)", xlabel="q_1 (radians)", ylabel="q_2 (radians)", title="Relative Trajectory for Pend2", legend=false, color=:red, msw=0, ms=.75) # plot the trajectories over time p7 = plot(sol_1.t, sol_1[1, :], label="pendulum 1", xlabel="time (s)", ylabel="q_1 (radians)", title="q_1 vs time", legend=:topright) plot!(p7, sol_2.t, sol_2[1, :], label="pendulum 2", xlabel="time (s)", ylabel="q_1 (radians)", title="q_1 vs time") p8 = plot(sol_1.t, sol_1[2, :], label="pendulum 1", xlabel="time (s)", ylabel="q_2 (radians)", title="q_2 vs time", legend=:topright) plot!(p8, sol_2.t, sol_2[2, :], label="pendulum 2", xlabel="time (s)", ylabel="q_2 (radians)", title="q_2 vs time") plt = plot(p1, p2, p3, p4, p5, p6, p7, p8, layout=(4, 2), size=(1000, 1000)) savefig(plt, "hw3/double_pendulum.png") # PROBLEM 2 -> show that the volume of the phase space is conserved ensemble = build_ensemble(-1, 1, -1, 1, 1000) # plot these points s1 = scatter(ensemble[1], ensemble[3], label="t=0", xlabel="q_1 (radians)", ylabel="p_1 (momentum)", title="Phase Space (i=1)", color=:blue, msw=.5) s2 = scatter(ensemble[2], ensemble[4], label="t=0", xlabel="q_2 (radians)", ylabel="p_2 (momentum)", title="Phase Space (i=2)", color=:red, msw=.5) # simulate the ensemble new_ensemble = simulate_ensembles(ensemble, t_span, p) # plot these points scatter!(s1, new_ensemble[1], new_ensemble[3], label="t=1000", xlabel="q_1 (radians)", ylabel="p_1 (momentum)", title="Phase Space (i=1)", color=:green, msw=.5) scatter!(s2, new_ensemble[2], new_ensemble[4], label="t=1000", xlabel="q_2 (radians)", ylabel="p_2 (momentum)", title="Phase Space (i=2)", color=:green, msw=.5) # print the volumes println("\n\nOriginal Volume:\t", estimate_phase_space_volume(ensemble, .1)) println("Final Volume:\t", estimate_phase_space_volume(new_ensemble, .1)) plt_2 = plot(s1, s2) savefig(plt_2, "hw3/ensemble.png")