using DifferentialEquations using Plots r_max = 160 r_steps = 320 sim_time = 1000.0 # STEP 1, go over each value of r and store the results # Simulate Lorenz 63 system and investigate sensitivity to initial conditions function tendency!(du, u, p, t) x,y,z = u σ,ρ,β = p du[1] = dx = σ*(y-x) du[2] = dy = x*(ρ-z) - y du[3] = dz = x*y - β*z end # make a linspace for these values of r r_values = range(0, r_max, length=r_steps) sols = [] for i in 1:r_steps r = r_values[i] p = [10.0, r, 8/3] # parameters of the Lorentz 63 system tspan = (0.0, sim_time) u0 = [1.0, 0.0, 0.0] prob = ODEProblem(tendency!, u0, tspan, p) sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8) # control simulation push!(sols, sol) println("r=$r") end # STEP 2, map data to arrays where plane crosses the x-axis r_maxes = [] z_maxes = [] r_mins = [] z_mins = [] for i in 1:r_steps println("i: ", length(sols[i].t)) z_values = sols[i][3, :] # iterate over to find the local maxima and minima # take off the first 300 values to avoid transient for j in 301:length(z_values)-1 if z_values[j] > z_values[j-1] && z_values[j] > z_values[j+1] push!(r_maxes, r_values[i]) push!(z_maxes, z_values[j]) end if z_values[j] < z_values[j-1] && z_values[j] < z_values[j+1] push!(r_mins, r_values[i]) push!(z_mins, z_values[j]) end end end # println("r_maxes: ", r_maxes) # println("z_maxes: ", z_maxes) # STEP 3, plot the bifurcation diagram plot(r_maxes, z_maxes, seriestype = :scatter, mc=:blue, ms=.25, ma=0.25, label="Maxima") plot!(r_mins, z_mins, seriestype = :scatter, mc=:green, ms=.25, ma=0.25, label="Minima") savefig("hw3/test3.png")