#!/usr/bin/env julia """Find eigenstates and eigenenergies of central potential problems""" using LinearAlgebra using Plots N = 5000 # number of lattice points L = 20.0 # r runs from 0 to L dr = L / N D = zeros(N, N) # discrete radial 2nd derivative operator V = zeros(N, N) # potential for i in 1:N D[i, i] = -2.0 end for i in 1:N-1 D[i, i+1] = 1.0 D[i+1, i] = 1.0 end #println("\nLattice Laplacian operator") #println(D) function potential(r, ℓ = 0) """ The potential energy""" #return 0.5 * ell * (ℓ+1.0) * pow(r, -2.0) # V=0: Free particle in spherical coordinates return -1.0/r + 0.5 * ℓ * (ℓ+1.0) * r^(-2.0) # Hydrogen atom #return -r^(-1.1) + 0.5 * ℓ * (ℓ+1.0) * r^(-2.0) # modified Coulomb potential end for i in 1:N r = (i + 0.5) * dr # radial coordinates of lattice points V[i, i] = potential(r, 0) end H = -0.5 * dr^(-2.0) * D + V # Hamiltonian. Here m = hbar = 1 #println("\nMatrix elements of Hamiltonian = ") #println(H) e, v = eigen(H) # diagonalize Hamiltonian println("\nGround state energy = ", e[1]) println("\n1st excited state energy = ", e[2]) println("\n2nd excited state energy = ", e[3]) println("\n3rd excited state energy = ", e[4]) println("\n4th excited state energy = ", e[5]) plot(potential) plot(v[:,1]) #plot(v[:,2])