aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--analysis.py59
-rw-r--r--api.py38
-rw-r--r--app.py134
-rw-r--r--ema.py63
-rw-r--r--main.py17
5 files changed, 196 insertions, 115 deletions
diff --git a/analysis.py b/analysis.py
index 644fe93..15ba0ef 100644
--- a/analysis.py
+++ b/analysis.py
@@ -14,27 +14,7 @@ import datetime
# make the line data for the 5 day exponential moving average (EMA)
-def calc_first_sma(period, prices):
- prices_sum = 0
- for i in range(0, period):
- prices_sum += prices[i] # 0, 1, 2, 3 ("popping" order)
- # print('prices_sum:\t', prices_sum)
- return prices_sum / period
-
-def calc_emas(period, prices):
- weighted_multiplier = 2.0 / (period + 1.0)
-
- # calculate the first ema
- first_ema = calc_first_sma(period, prices)
-
- # calculate the rest ema's using that first
- emas = [first_ema] * period
- for i in range(period + 1, len(prices)): # 4, 5, 6, ... , last
- last_ema = emas[-1]
- next_ema = prices[i] * weighted_multiplier + last_ema * (1 - weighted_multiplier)
- emas.append(next_ema)
- return emas
def interpolate_intersection(intersection_indices, timestamps, prices1, prices2):
left_index = intersection_indices[0]
@@ -72,8 +52,8 @@ def find_intersections(prices1, prices2, offset=0):
if len(prices1) != len(prices2):
print("ERROR IN find_intersections: len of arrs not the same")
return []
- prev_p1 = prices1[0]
- prev_p2 = prices2[0]
+ prev_p1 = prices1[offset]
+ prev_p2 = prices2[offset]
intersection_indices = set()
for i in range(1 + offset, len(prices1)):
next_p1 = prices1[i]
@@ -93,39 +73,4 @@ def find_intersections(prices1, prices2, offset=0):
return intersection_indices
-def calculate_profit(buy_line, sell_line, prices, timestamps, offset=0, starting_money=10000):
- if len(buy_line) != len(sell_line):
- print("ERROR IN find_intersections: len of arrs not the same")
- return []
- is_bought = False
- curr_money = 10000
- shares_owned = 0
- buy_info = []
- sell_info = []
- for i in range(offset, len(buy_line)):
- current_b1 = buy_line[i]
- current_sl = sell_line[i]
- # if the sign is positive, we want to hold, if it's negative, we want to sell
- sign_signal = current_b1 - current_sl
-
- if sign_signal > 0:
- if not is_bought:
- # buy the stock
- shares_owned = curr_money / prices[i]
- curr_money = 0
- buy_info.append((timestamps[i], prices[i], i))
- is_bought = True
- if sign_signal < 0:
- if is_bought:
- # selling the stock
- curr_money = prices[i] * shares_owned
- shares_owned = 0
- sell_info.append((timestamps[i], prices[i], i))
- is_bought = False
-
- # TODO: consider end interval
- total_assets = prices[-1] * shares_owned + curr_money
- percent_gain = (total_assets - starting_money) / starting_money
- return (percent_gain, total_assets, buy_info, sell_info)
-
\ No newline at end of file
diff --git a/api.py b/api.py
new file mode 100644
index 0000000..0625f1a
--- /dev/null
+++ b/api.py
@@ -0,0 +1,38 @@
+import requests
+import json
+
+"""
+Given the parameters,
+fetches the data for the corresponding chart using yahoo finance.
+Expect it to raise an error on bad params!
+"""
+def fetch_chart_data(ticker, period='1y', interval='1d'):
+ params = {
+ 'interval' : interval, # 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 4h, 1d, 5d, 1wk, 1mo, 3mo
+ 'range' : period, # "1d","5d","1mo","3mo","6mo","1y","2y","5y","10y","ytd","max"
+ 'events' : 'div|split|earn',
+ 'includePrePost' : 'false' }
+ headers = {'User-agent' : 'fin-backtesting-proj'}
+ r = requests.get("https://query2.finance.yahoo.com/v8/finance/chart/" + ticker, headers=headers, params=params)
+
+ print(r.url)
+ print("status_code:\t", r.status_code)
+
+ # decode the JSON response data into a Python object
+ r.raise_for_status() # raises if error before parsing
+ data_obj = r.json()
+
+ # get the specific data we want
+ timestamps = data_obj['chart']['result'][0]['timestamp']
+ close_prices = data_obj['chart']['result'][0]['indicators']['quote'][0]['close']
+ print('close_price len: ', len(close_prices), 'timestamps len: ', len(timestamps))
+ # clean out null's and 0s from the data
+ for i in range(len(timestamps)):
+ if close_prices[i] == None or close_prices[i] == 0:
+ del close_prices[i]
+ del timestamps[i]
+ i -= 1
+
+ name = data_obj['chart']['result'][0]['meta']['longName']
+
+ return {'timestamps': timestamps, 'prices': close_prices, 'name': name} \ No newline at end of file
diff --git a/app.py b/app.py
index 51e0564..c815f10 100644
--- a/app.py
+++ b/app.py
@@ -1,5 +1,7 @@
from dash import Dash, dcc, html, Input, Output
-from analysis import calc_emas, find_intersections, interpolate_intersection, calculate_profit
+from analysis import find_intersections, interpolate_intersection
+from api import fetch_chart_data
+from ema import calc_emas, calculate_profit
import plotly.graph_objects as go
import json
import datetime
@@ -7,71 +9,97 @@ import datetime
app = Dash(__name__)
# pull stock data from json files
-timestamps_file = open('timestamps.json', 'r')
-timestamps_file_data = timestamps_file.read()
-timestamps_raw = json.loads(timestamps_file_data)
-timestamps = [datetime.datetime.fromtimestamp(t) for t in timestamps_raw]
+# timestamps_file = open('timestamps.json', 'r')
+# timestamps_file_data = timestamps_file.read()
+# timestamps_raw = json.loads(timestamps_file_data)
+# timestamps = [datetime.datetime.fromtimestamp(t) for t in timestamps_raw]
-prices_file = open('close_prices.json', 'r')
-prices = json.loads(prices_file.read())
+# prices_file = open('close_prices.json', 'r')
+# prices = json.loads(prices_file.read())
-ema_5 = calc_emas(5, prices)
-ema_13 = calc_emas(13, prices)
-
-intersection_indices = find_intersections(ema_5, ema_13, offset=13) # offset so don't calculate the SMA days
-interpolated_intersections = [interpolate_intersection(indices, timestamps, ema_5, ema_13) for indices in intersection_indices]
-intersected_x = []
-intersected_y = []
-for x,y in interpolated_intersections:
- intersected_x.append(x)
- intersected_y.append(y)
-
-profit = calculate_profit(ema_5, ema_13, prices, timestamps, 13)
-buy_info = profit[-2]
-buy_x = []
-buy_y = []
-for x,y,_ in buy_info:
- buy_x.append(x)
- buy_y.append(y)
-
-sell_info = profit[-1]
-sell_x = []
-sell_y = []
-for x,y,_ in sell_info:
- sell_x.append(x)
- sell_y.append(y)
-
-print("Result Analysis:\n", "Percent gain/loss:\t", profit[0])
-percent_gain = profit[0] * 100
+# intersection_indices = find_intersections(ema_5, ema_13, offset=13) # offset so don't calculate the SMA days
+# interpolated_intersections = [interpolate_intersection(indices, timestamps, ema_5, ema_13) for indices in intersection_indices]
+# intersected_x = []
+# intersected_y = []
+# for x,y in interpolated_intersections:
+# intersected_x.append(x)
+# intersected_y.append(y)
+percent_gain = 0
+memo_fig = None
app.layout = html.Div([
html.H4('Interactive color selection with simple Dash example'),
- html.P("Select color:"),
+ html.Label("Ticker ", htmlFor="ticker"),
+ dcc.Input(id="ticker", value="SPY", type="text"),
+ html.Br(),
+ html.Label("Period ", htmlFor="period"),
dcc.Dropdown(
- id="dropdown",
- options=['Gold', 'MediumTurquoise', 'LightGreen'],
- value='Gold',
- clearable=False,
+ id="period_dropdown",
+ options=["1d","5d","1mo","3mo","6mo","1y","2y","5y","10y","ytd","max"],
+ value = "1y",
),
+ html.Br(),
+ html.Label("Interval ", htmlFor="Interval"),
+ dcc.Dropdown(
+ id="interval_dropdown",
+ options=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "4h", "1d", "5d", "1wk", "1mo", "3mo"],
+ value = "1d",
+ ),
+ html.Hr(),
dcc.Graph(id="graph"),
- html.P("If bought and sold on these signals, the percent gain/loss would be: " + str(round(percent_gain, 4)))
+ html.P("If bought and sold on these signals, the percent gain/loss would be: " + str(percent_gain))
])
@app.callback(
Output("graph", "figure"),
- Input("dropdown", "value"))
-def display_color(color):
- fig = go.Figure(
- [
- go.Scatter(name='Price', x=timestamps, y=prices, line=dict(color='rgb(0, 255, 0)'), mode='lines'),
- # go.Scatter(name='5 day EMA', x=timestamps, y=ema_5, line=dict(color='rgb(0, 255, 0)'), mode='lines'),
- # go.Scatter(name='13 day EMA', x=timestamps, y=ema_13, line=dict(color='rgb(0, 0, 255)'), mode='lines'),
- # go.Scatter(name='EMA Intersections', x=intersected_x, y=intersected_y, line=dict(color='rgb(255, 0, 0)'), mode='markers')
- go.Scatter(name='Buys', x=buy_x, y=buy_y, line=dict(color='rgb(0, 0, 255)'), mode='markers', marker_size=10),
- go.Scatter(name='Sells', x=sell_x, y=sell_y, line=dict(color='rgb(255, 255, 0)'), mode='markers', marker_size=10),
- ]
+ Input("ticker", "value"),
+ Input("period_dropdown", "value"),
+ Input("interval_dropdown", "value")
)
- return fig
+def display_color(ticker, period, interval):
+ try:
+ chart_data = fetch_chart_data(ticker, period, interval)
+ except:
+ return memo_fig
+ else:
+ timestamps_raw = chart_data['timestamps']
+ timestamps = [datetime.datetime.fromtimestamp(t) for t in timestamps_raw]
+ prices = chart_data['prices']
+
+ ema_5 = calc_emas(5, prices)
+ ema_13 = calc_emas(13, prices)
+ profit = calculate_profit(ema_5, ema_13, prices, timestamps, 13)
+ buy_info = profit[-2]
+ buy_x = []
+ buy_y = []
+ for x,y,_ in buy_info:
+ buy_x.append(x)
+ buy_y.append(y)
+
+ sell_info = profit[-1]
+ sell_x = []
+ sell_y = []
+ for x,y,_ in sell_info:
+ sell_x.append(x)
+ sell_y.append(y)
+
+ print("Result Analysis:\n", "Percent gain/loss:\t", profit[0], profit[1], profit[2])
+ percent_gain = profit[0] * 100
+ finally:
+ # Code to execute no matter what (optional)
+ fig = go.Figure(
+ [
+ go.Scatter(name='Price', x=timestamps, y=prices, line=dict(color='rgb(0, 0, 0)'), mode='lines'),
+ # go.Scatter(name='5 day EMA', x=timestamps, y=ema_5, line=dict(color='rgb(0, 255, 0)'), mode='lines'),
+ # go.Scatter(name='13 day EMA', x=timestamps, y=ema_13, line=dict(color='rgb(0, 0, 255)'), mode='lines'),
+ # go.Scatter(name='EMA Intersections', x=intersected_x, y=intersected_y, line=dict(color='rgb(255, 0, 0)'), mode='markers'),
+ go.Scatter(name='Buys', x=buy_x, y=buy_y, line=dict(color='rgb(0, 0, 255)'), mode='markers', marker_size=10),
+ go.Scatter(name='Sells', x=sell_x, y=sell_y, line=dict(color='rgb(255, 255, 0)'), mode='markers', marker_size=10),
+ ]
+ )
+ print(ticker, period, interval)
+ memo_fig = fig
+ return fig
app.run(debug=True) \ No newline at end of file
diff --git a/ema.py b/ema.py
new file mode 100644
index 0000000..9b4a604
--- /dev/null
+++ b/ema.py
@@ -0,0 +1,63 @@
+def compute_buy_sell_signals_ema(period1, period2, prices):
+ ema_5 = calc_emas(5, prices)
+ ema_13 = calc_emas(13, prices)
+
+
+def calc_first_sma(period, prices):
+ prices_sum = 0
+ for i in range(0, period):
+ prices_sum += prices[i] # 0, 1, 2, 3 ("popping" order)
+ # print('prices_sum:\t', prices_sum)
+
+ return prices_sum / period
+
+def calc_emas(period, prices):
+ weighted_multiplier = 2.0 / (period + 1.0)
+
+ # calculate the first ema
+ first_ema = calc_first_sma(period, prices)
+
+ # calculate the rest ema's using that first
+ emas = [first_ema] * period
+ for i in range(period + 1, len(prices)): # 4, 5, 6, ... , last
+ last_ema = emas[-1]
+ if prices[i] == None or prices[i] == 0:
+ print(i)
+ next_ema = prices[i] * weighted_multiplier + last_ema * (1 - weighted_multiplier)
+ emas.append(next_ema)
+ return emas
+
+def calculate_profit(buy_line, sell_line, prices, timestamps, offset=0, starting_money=10000):
+ if len(buy_line) != len(sell_line):
+ print("ERROR IN find_intersections: len of arrs not the same")
+ return []
+ is_bought = False
+ curr_money = 10000
+ shares_owned = 0
+ buy_info = [] # coming in, (time, cash, # current shares, # shares to buy)
+ sell_info = [] # (time, cash, # current shares, # shares to sell,)
+ for i in range(offset, len(buy_line)):
+ current_b1 = buy_line[i]
+ current_sl = sell_line[i]
+ # if the sign is positive, we want to hold, if it's negative, we want to sell
+ sign_signal = current_b1 - current_sl
+
+ if sign_signal > 0:
+ if not is_bought:
+ # buy the stock
+ shares_owned = curr_money / prices[i]
+ curr_money = 0
+ buy_info.append((timestamps[i], prices[i], i))
+ is_bought = True
+ if sign_signal < 0:
+ if is_bought:
+ # selling the stock
+ curr_money = prices[i] * shares_owned
+ shares_owned = 0
+ sell_info.append((timestamps[i], prices[i], i))
+ is_bought = False
+
+ # TODO: consider end interval
+ total_assets = prices[-1] * shares_owned + curr_money
+ percent_gain = (total_assets - starting_money) / starting_money
+ return (percent_gain, total_assets, starting_money, buy_info, sell_info) \ No newline at end of file
diff --git a/main.py b/main.py
index 2a4ddff..5ddd8af 100644
--- a/main.py
+++ b/main.py
@@ -2,19 +2,17 @@ import requests
import json
import datetime
-print("hello")
-
"""
First pull data from yahoo api
"""
params = { #'period1' : '1753487940',
#'period2' : '1753725600',
- 'interval' : '1d',
- 'range' : '1y',
+ 'interval' : '1wk', # 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 4h, 1d, 5d, 1wk, 1mo, 3mo
+ 'range' : '5y', # "1d","5d","1mo","3mo","6mo","1y","2y","5y","10y","ytd","max"
'events' : 'div|split|earn',
'includePrePost' : 'false' }
headers = {'User-agent' : 'fin-backtesting-proj'}
-r = requests.get("https://query2.finance.yahoo.com/v8/finance/chart/AAPL", headers=headers, params=params)
+r = requests.get("https://query2.finance.yahoo.com/v8/finance/chart/SPY", headers=headers, params=params)
print(r.url)
print("status_code:\t", r.status_code)
@@ -28,6 +26,15 @@ timestamps = data_obj['chart']['result'][0]['timestamp']
close_prices = data_obj['chart']['result'][0]['indicators']['quote'][0]['close']
print('close_price len: ', len(close_prices), 'timestamps len: ', len(timestamps))
+# clean out null's and 0s
+for i in range(len(timestamps)):
+ if close_prices[i] == None or close_prices[i] == 0:
+ del close_prices[i]
+ del timestamps[i]
+ i -= 1
+
+print('close_price len: ', len(close_prices), 'timestamps len: ', len(timestamps))
+
# save timestamps and close prices into separate files
timestamps_encoded = json.dumps(timestamps)
close_prices_encoded = json.dumps(close_prices)