aboutsummaryrefslogtreecommitdiff
path: root/analysis.py
blob: ca409b0f0e594bf1fdcce1000e6ecbaf3c6c976d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import json
import datetime
import os
import pandas as pd

def summarize_results(batch_name):
    """
    Summarizes the results of the backtesting by calculating average percent gain/loss,
    and finding the best stock order.
    """
    
    # get the result data json files under batches
    batch_folder = f'batches/{batch_name}'
    result_files = [f for f in os.listdir(batch_folder) if f.endswith('.json')]

    results_summary = []

    # make a dict for the algo table
    algos_to_results = {}
    print(len(result_files), "results found in", batch_folder)
    for result in result_files:
        file_path = os.path.join(batch_folder, result)
        with open(file_path, 'r') as fd:
            result_data = json.load(fd)
        
        # extract the relevant data
        result = result_data['backtest_results']
        if not result:
            continue

        algo_name = result['algo_name']
        algo_params = result['algo_params']
        algo_key = f"{algo_name}_{algo_params}"

        if algo_key not in algos_to_results:
            algos_to_results[algo_key] = {
                'percent_gains': [],
                'stock_orders': [],
                'file_names': [],
                'url_params': []
            }

        algos_to_results[algo_key]['percent_gains'].append(result['percent_gain'])

        stock_ticker = result_data['url_params']['ticker']
        algos_to_results[algo_key]['stock_orders'].append(stock_ticker)
        algos_to_results[algo_key]['file_names'].append(file_path.split('/')[-1])
        algos_to_results[algo_key]['url_params'].append(result_data['url_params'])
        
    for algo_name, result in algos_to_results.items():
        algo_params = algo_name.split('_')[1]  # Extract params from the key
        algo_name_alone = algo_name.split('_')[0]  # Extract name from the key

        if not result['percent_gains'] and not result['percent_losses']:
            continue  # Skip if no gains or losses

        # calculate average percent gain/loss
        avg_percent_gain = sum(result['percent_gains']) / len(result['percent_gains']) if result['percent_gains'] else 0

        # calculate which stock ticker produced the best result
        stock_orders = result['stock_orders']
        if stock_orders:
            best_stock_order = max(set(stock_orders), key=stock_orders.count)
        else:
            best_stock_order = "N/A"

        # Append the summarized data
        results_summary.append([
            algo_name_alone, 
            algo_params,
            avg_percent_gain, 
            best_stock_order
        ])
    
    # Sort the results by average percent gain in descending order
    results_summary.sort(key=lambda x: x[2], reverse=True)

    print("Results Summary:")

    # Return the summarized results as a DataFrame
    return pd.DataFrame(results_summary, columns=[
        'algo_name', 
        'algo_params',
        'avg_percent_gain', 
        'best_stock_for_gain'
    ]), algos_to_results

def test():
    """
    Test function to summarize results from a specific batch.
    """
    batch_name = 'test-1-ema'
    results = summarize_results(batch_name)
    print(results)

test()

# pull stock data from json files
# timestamps_file = open('timestamps.json', 'r')
# timestamps_file_data = timestamps_file.read()
# timestamps = json.loads(timestamps_file_data)
# timestamps = [datetime.datetime.fromtimestamp(t) for t in timestamps]

# prices_file = open('close_prices.json', 'r')
# prices = json.loads(prices_file.read())

# print('timestamps:\t', timestamps, '\nprices:\t', prices)

# make the line data for the 5 day exponential moving average (EMA)



def interpolate_intersection(intersection_indices, timestamps, prices1, prices2):
    left_index = intersection_indices[0]
    right_index = intersection_indices[1]
    if right_index == -1:
        return timestamps[left_index]
    
    y_1 = prices1[left_index]
    y_2 = prices1[right_index] # first line

    v_1 = prices2[left_index]
    v_2 = prices2[right_index] # second line

    x_1 = 0 # take this as zero the simplify the algebra
    x_diff = timestamps[right_index] - timestamps[left_index] # same for both lines

    # find intersection between those lines
    x_diff = x_diff.total_seconds()
    m_1 = (y_2 - y_1) / x_diff # slope of line 1
    m_2 = (v_2 - v_1) / x_diff

    x_interpolated = (v_1 - y_1) / (m_1 - m_2)
    y_interpolated = m_1 * (x_interpolated) + y_1

    # add back the time we subtracted to make x_1=0
    x_interpolated = datetime.timedelta(seconds = x_interpolated) + timestamps[left_index]
    return (x_interpolated, y_interpolated)



"""
Returns the indices of where two arrays' values intersects
"""
def find_intersections(prices1, prices2, offset=0):
    if len(prices1) != len(prices2):
        print("ERROR IN find_intersections: len of arrs not the same")
        return []
    prev_p1 = prices1[offset]
    prev_p2 = prices2[offset]
    intersection_indices = set()
    for i in range(1 + offset, len(prices1)):
        next_p1 = prices1[i]
        next_p2 = prices2[i]
        # if the sign (negative to positive) changes, then there was an intersection between these pts
        sub_prev = prev_p1 - prev_p2
        sub_next = next_p1 - next_p2

        if (sub_prev > 0 and sub_next < 0) or (sub_prev < 0 and sub_next > 0):
            intersection_indices.add((i-1, i))
        
        if sub_next == 0:
            intersection_indices.add((i, -1))

        prev_p1 = next_p1
        prev_p2 = next_p2
    
    return intersection_indices