1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
|
from __future__ import annotations
from functools import lru_cache
from typing import TYPE_CHECKING, Any, Iterable, Iterator, Mapping, Sequence, cast
import pyarrow as pa
import pyarrow.compute as pc
from narwhals._compliant.series import _SeriesNamespace
from narwhals._utils import isinstance_or_issubclass
from narwhals.exceptions import ShapeError
if TYPE_CHECKING:
from typing_extensions import TypeAlias, TypeIs
from narwhals._arrow.series import ArrowSeries
from narwhals._arrow.typing import (
ArrayAny,
ArrayOrScalar,
ArrayOrScalarT1,
ArrayOrScalarT2,
ChunkedArrayAny,
NativeIntervalUnit,
ScalarAny,
)
from narwhals._duration import IntervalUnit
from narwhals._utils import Version
from narwhals.dtypes import DType
from narwhals.typing import IntoDType, PythonLiteral
# NOTE: stubs don't allow for `ChunkedArray[StructArray]`
# Intended to represent the `.chunks` property storing `list[pa.StructArray]`
ChunkedArrayStructArray: TypeAlias = ChunkedArrayAny
def is_timestamp(t: Any) -> TypeIs[pa.TimestampType[Any, Any]]: ...
def is_duration(t: Any) -> TypeIs[pa.DurationType[Any]]: ...
def is_list(t: Any) -> TypeIs[pa.ListType[Any]]: ...
def is_large_list(t: Any) -> TypeIs[pa.LargeListType[Any]]: ...
def is_fixed_size_list(t: Any) -> TypeIs[pa.FixedSizeListType[Any, Any]]: ...
def is_dictionary(t: Any) -> TypeIs[pa.DictionaryType[Any, Any, Any]]: ...
def extract_regex(
strings: ChunkedArrayAny,
/,
pattern: str,
*,
options: Any = None,
memory_pool: Any = None,
) -> ChunkedArrayStructArray: ...
else:
from pyarrow.compute import extract_regex
from pyarrow.types import (
is_dictionary, # noqa: F401
is_duration,
is_fixed_size_list,
is_large_list,
is_list,
is_timestamp,
)
UNITS_DICT: Mapping[IntervalUnit, NativeIntervalUnit] = {
"y": "year",
"q": "quarter",
"mo": "month",
"d": "day",
"h": "hour",
"m": "minute",
"s": "second",
"ms": "millisecond",
"us": "microsecond",
"ns": "nanosecond",
}
lit = pa.scalar
"""Alias for `pyarrow.scalar`."""
def extract_py_scalar(value: Any, /) -> Any:
from narwhals._arrow.series import maybe_extract_py_scalar
return maybe_extract_py_scalar(value, return_py_scalar=True)
def chunked_array(
arr: ArrayOrScalar | list[Iterable[Any]], dtype: pa.DataType | None = None, /
) -> ChunkedArrayAny:
if isinstance(arr, pa.ChunkedArray):
return arr
if isinstance(arr, list):
return pa.chunked_array(arr, dtype)
else:
return pa.chunked_array([arr], arr.type)
def nulls_like(n: int, series: ArrowSeries) -> ArrayAny:
"""Create a strongly-typed Array instance with all elements null.
Uses the type of `series`, without upseting `mypy`.
"""
return pa.nulls(n, series.native.type)
@lru_cache(maxsize=16)
def native_to_narwhals_dtype(dtype: pa.DataType, version: Version) -> DType: # noqa: C901, PLR0912
dtypes = version.dtypes
if pa.types.is_int64(dtype):
return dtypes.Int64()
if pa.types.is_int32(dtype):
return dtypes.Int32()
if pa.types.is_int16(dtype):
return dtypes.Int16()
if pa.types.is_int8(dtype):
return dtypes.Int8()
if pa.types.is_uint64(dtype):
return dtypes.UInt64()
if pa.types.is_uint32(dtype):
return dtypes.UInt32()
if pa.types.is_uint16(dtype):
return dtypes.UInt16()
if pa.types.is_uint8(dtype):
return dtypes.UInt8()
if pa.types.is_boolean(dtype):
return dtypes.Boolean()
if pa.types.is_float64(dtype):
return dtypes.Float64()
if pa.types.is_float32(dtype):
return dtypes.Float32()
# bug in coverage? it shows `31->exit` (where `31` is currently the line number of
# the next line), even though both when the if condition is true and false are covered
if ( # pragma: no cover
pa.types.is_string(dtype)
or pa.types.is_large_string(dtype)
or getattr(pa.types, "is_string_view", lambda _: False)(dtype)
):
return dtypes.String()
if pa.types.is_date32(dtype):
return dtypes.Date()
if is_timestamp(dtype):
return dtypes.Datetime(time_unit=dtype.unit, time_zone=dtype.tz)
if is_duration(dtype):
return dtypes.Duration(time_unit=dtype.unit)
if pa.types.is_dictionary(dtype):
return dtypes.Categorical()
if pa.types.is_struct(dtype):
return dtypes.Struct(
[
dtypes.Field(
dtype.field(i).name,
native_to_narwhals_dtype(dtype.field(i).type, version),
)
for i in range(dtype.num_fields)
]
)
if is_list(dtype) or is_large_list(dtype):
return dtypes.List(native_to_narwhals_dtype(dtype.value_type, version))
if is_fixed_size_list(dtype):
return dtypes.Array(
native_to_narwhals_dtype(dtype.value_type, version), dtype.list_size
)
if pa.types.is_decimal(dtype):
return dtypes.Decimal()
if pa.types.is_time32(dtype) or pa.types.is_time64(dtype):
return dtypes.Time()
if pa.types.is_binary(dtype):
return dtypes.Binary()
return dtypes.Unknown() # pragma: no cover
def narwhals_to_native_dtype(dtype: IntoDType, version: Version) -> pa.DataType: # noqa: C901, PLR0912
dtypes = version.dtypes
if isinstance_or_issubclass(dtype, dtypes.Decimal):
msg = "Casting to Decimal is not supported yet."
raise NotImplementedError(msg)
if isinstance_or_issubclass(dtype, dtypes.Float64):
return pa.float64()
if isinstance_or_issubclass(dtype, dtypes.Float32):
return pa.float32()
if isinstance_or_issubclass(dtype, dtypes.Int64):
return pa.int64()
if isinstance_or_issubclass(dtype, dtypes.Int32):
return pa.int32()
if isinstance_or_issubclass(dtype, dtypes.Int16):
return pa.int16()
if isinstance_or_issubclass(dtype, dtypes.Int8):
return pa.int8()
if isinstance_or_issubclass(dtype, dtypes.UInt64):
return pa.uint64()
if isinstance_or_issubclass(dtype, dtypes.UInt32):
return pa.uint32()
if isinstance_or_issubclass(dtype, dtypes.UInt16):
return pa.uint16()
if isinstance_or_issubclass(dtype, dtypes.UInt8):
return pa.uint8()
if isinstance_or_issubclass(dtype, dtypes.String):
return pa.string()
if isinstance_or_issubclass(dtype, dtypes.Boolean):
return pa.bool_()
if isinstance_or_issubclass(dtype, dtypes.Categorical):
return pa.dictionary(pa.uint32(), pa.string())
if isinstance_or_issubclass(dtype, dtypes.Datetime):
unit = dtype.time_unit
return pa.timestamp(unit, tz) if (tz := dtype.time_zone) else pa.timestamp(unit)
if isinstance_or_issubclass(dtype, dtypes.Duration):
return pa.duration(dtype.time_unit)
if isinstance_or_issubclass(dtype, dtypes.Date):
return pa.date32()
if isinstance_or_issubclass(dtype, dtypes.List):
return pa.list_(value_type=narwhals_to_native_dtype(dtype.inner, version=version))
if isinstance_or_issubclass(dtype, dtypes.Struct):
return pa.struct(
[
(field.name, narwhals_to_native_dtype(field.dtype, version=version))
for field in dtype.fields
]
)
if isinstance_or_issubclass(dtype, dtypes.Array): # pragma: no cover
inner = narwhals_to_native_dtype(dtype.inner, version=version)
list_size = dtype.size
return pa.list_(inner, list_size=list_size)
if isinstance_or_issubclass(dtype, dtypes.Time):
return pa.time64("ns")
if isinstance_or_issubclass(dtype, dtypes.Binary):
return pa.binary()
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)
def extract_native(
lhs: ArrowSeries, rhs: ArrowSeries | PythonLiteral | ScalarAny
) -> tuple[ChunkedArrayAny | ScalarAny, ChunkedArrayAny | ScalarAny]:
"""Extract native objects in binary operation.
If the comparison isn't supported, return `NotImplemented` so that the
"right-hand-side" operation (e.g. `__radd__`) can be tried.
If one of the two sides has a `_broadcast` flag, then extract the scalar
underneath it so that PyArrow can do its own broadcasting.
"""
from narwhals._arrow.dataframe import ArrowDataFrame
from narwhals._arrow.series import ArrowSeries
if rhs is None: # pragma: no cover
return lhs.native, lit(None, type=lhs._type)
if isinstance(rhs, ArrowDataFrame):
return NotImplemented
if isinstance(rhs, ArrowSeries):
if lhs._broadcast and not rhs._broadcast:
return lhs.native[0], rhs.native
if rhs._broadcast:
return lhs.native, rhs.native[0]
return lhs.native, rhs.native
if isinstance(rhs, list):
msg = "Expected Series or scalar, got list."
raise TypeError(msg)
return lhs.native, rhs if isinstance(rhs, pa.Scalar) else lit(rhs)
def align_series_full_broadcast(*series: ArrowSeries) -> Sequence[ArrowSeries]:
# Ensure all of `series` are of the same length.
lengths = [len(s) for s in series]
max_length = max(lengths)
fast_path = all(_len == max_length for _len in lengths)
if fast_path:
return series
reshaped = []
for s in series:
if s._broadcast:
value = s.native[0]
if s._backend_version < (13,) and hasattr(value, "as_py"):
value = value.as_py()
reshaped.append(s._with_native(pa.array([value] * max_length, type=s._type)))
else:
if (actual_len := len(s)) != max_length:
msg = f"Expected object of length {max_length}, got {actual_len}."
raise ShapeError(msg)
reshaped.append(s)
return reshaped
def floordiv_compat(left: ArrayOrScalar, right: ArrayOrScalar, /) -> Any:
# The following lines are adapted from pandas' pyarrow implementation.
# Ref: https://github.com/pandas-dev/pandas/blob/262fcfbffcee5c3116e86a951d8b693f90411e68/pandas/core/arrays/arrow/array.py#L124-L154
if pa.types.is_integer(left.type) and pa.types.is_integer(right.type):
divided = pc.divide_checked(left, right)
# TODO @dangotbanned: Use a `TypeVar` in guards
# Narrowing to a `Union` isn't interacting well with the rest of the stubs
# https://github.com/zen-xu/pyarrow-stubs/pull/215
if pa.types.is_signed_integer(divided.type):
div_type = cast("pa._lib.Int64Type", divided.type)
has_remainder = pc.not_equal(pc.multiply(divided, right), left)
has_one_negative_operand = pc.less(
pc.bit_wise_xor(left, right), lit(0, div_type)
)
result = pc.if_else(
pc.and_(has_remainder, has_one_negative_operand),
pc.subtract(divided, lit(1, div_type)),
divided,
)
else:
result = divided # pragma: no cover
result = result.cast(left.type)
else:
divided = pc.divide(left, right)
result = pc.floor(divided)
return result
def cast_for_truediv(
arrow_array: ArrayOrScalarT1, pa_object: ArrayOrScalarT2
) -> tuple[ArrayOrScalarT1, ArrayOrScalarT2]:
# Lifted from:
# https://github.com/pandas-dev/pandas/blob/262fcfbffcee5c3116e86a951d8b693f90411e68/pandas/core/arrays/arrow/array.py#L108-L122
# Ensure int / int -> float mirroring Python/Numpy behavior
# as pc.divide_checked(int, int) -> int
if pa.types.is_integer(arrow_array.type) and pa.types.is_integer(pa_object.type):
# GH: 56645. # noqa: ERA001
# https://github.com/apache/arrow/issues/35563
# NOTE: `pyarrow==11.*` doesn't allow keywords in `Array.cast`
return pc.cast(arrow_array, pa.float64(), safe=False), pc.cast(
pa_object, pa.float64(), safe=False
)
return arrow_array, pa_object
# Regex for date, time, separator and timezone components
DATE_RE = r"(?P<date>\d{1,4}[-/.]\d{1,2}[-/.]\d{1,4}|\d{8})"
SEP_RE = r"(?P<sep>\s|T)"
TIME_RE = r"(?P<time>\d{2}:\d{2}(?::\d{2})?|\d{6}?)" # \s*(?P<period>[AP]M)?)?
HMS_RE = r"^(?P<hms>\d{2}:\d{2}:\d{2})$"
HM_RE = r"^(?P<hm>\d{2}:\d{2})$"
HMS_RE_NO_SEP = r"^(?P<hms_no_sep>\d{6})$"
TZ_RE = r"(?P<tz>Z|[+-]\d{2}:?\d{2})" # Matches 'Z', '+02:00', '+0200', '+02', etc.
FULL_RE = rf"{DATE_RE}{SEP_RE}?{TIME_RE}?{TZ_RE}?$"
# Separate regexes for different date formats
YMD_RE = r"^(?P<year>(?:[12][0-9])?[0-9]{2})(?P<sep1>[-/.])(?P<month>0[1-9]|1[0-2])(?P<sep2>[-/.])(?P<day>0[1-9]|[12][0-9]|3[01])$"
DMY_RE = r"^(?P<day>0[1-9]|[12][0-9]|3[01])(?P<sep1>[-/.])(?P<month>0[1-9]|1[0-2])(?P<sep2>[-/.])(?P<year>(?:[12][0-9])?[0-9]{2})$"
MDY_RE = r"^(?P<month>0[1-9]|1[0-2])(?P<sep1>[-/.])(?P<day>0[1-9]|[12][0-9]|3[01])(?P<sep2>[-/.])(?P<year>(?:[12][0-9])?[0-9]{2})$"
YMD_RE_NO_SEP = r"^(?P<year>(?:[12][0-9])?[0-9]{2})(?P<month>0[1-9]|1[0-2])(?P<day>0[1-9]|[12][0-9]|3[01])$"
DATE_FORMATS = (
(YMD_RE_NO_SEP, "%Y%m%d"),
(YMD_RE, "%Y-%m-%d"),
(DMY_RE, "%d-%m-%Y"),
(MDY_RE, "%m-%d-%Y"),
)
TIME_FORMATS = ((HMS_RE, "%H:%M:%S"), (HM_RE, "%H:%M"), (HMS_RE_NO_SEP, "%H%M%S"))
def _extract_regex_concat_arrays(
strings: ChunkedArrayAny,
/,
pattern: str,
*,
options: Any = None,
memory_pool: Any = None,
) -> pa.StructArray:
r = pa.concat_arrays(
extract_regex(strings, pattern, options=options, memory_pool=memory_pool).chunks
)
return cast("pa.StructArray", r)
def parse_datetime_format(arr: ChunkedArrayAny) -> str:
"""Try to infer datetime format from StringArray."""
matches = _extract_regex_concat_arrays(arr.drop_null().slice(0, 10), pattern=FULL_RE)
if not pc.all(matches.is_valid()).as_py():
msg = (
"Unable to infer datetime format, provided format is not supported. "
"Please report a bug to https://github.com/narwhals-dev/narwhals/issues"
)
raise NotImplementedError(msg)
separators = matches.field("sep")
tz = matches.field("tz")
# separators and time zones must be unique
if pc.count(pc.unique(separators)).as_py() > 1:
msg = "Found multiple separator values while inferring datetime format."
raise ValueError(msg)
if pc.count(pc.unique(tz)).as_py() > 1:
msg = "Found multiple timezone values while inferring datetime format."
raise ValueError(msg)
date_value = _parse_date_format(cast("pc.StringArray", matches.field("date")))
time_value = _parse_time_format(cast("pc.StringArray", matches.field("time")))
sep_value = separators[0].as_py()
tz_value = "%z" if tz[0].as_py() else ""
return f"{date_value}{sep_value}{time_value}{tz_value}"
def _parse_date_format(arr: pc.StringArray) -> str:
for date_rgx, date_fmt in DATE_FORMATS:
matches = pc.extract_regex(arr, pattern=date_rgx)
if date_fmt == "%Y%m%d" and pc.all(matches.is_valid()).as_py():
return date_fmt
elif (
pc.all(matches.is_valid()).as_py()
and pc.count(pc.unique(sep1 := matches.field("sep1"))).as_py() == 1
and pc.count(pc.unique(sep2 := matches.field("sep2"))).as_py() == 1
and (date_sep_value := sep1[0].as_py()) == sep2[0].as_py()
):
return date_fmt.replace("-", date_sep_value)
msg = (
"Unable to infer datetime format. "
"Please report a bug to https://github.com/narwhals-dev/narwhals/issues"
)
raise ValueError(msg)
def _parse_time_format(arr: pc.StringArray) -> str:
for time_rgx, time_fmt in TIME_FORMATS:
matches = pc.extract_regex(arr, pattern=time_rgx)
if pc.all(matches.is_valid()).as_py():
return time_fmt
return ""
def pad_series(
series: ArrowSeries, *, window_size: int, center: bool
) -> tuple[ArrowSeries, int]:
"""Pad series with None values on the left and/or right side, depending on the specified parameters.
Arguments:
series: The input ArrowSeries to be padded.
window_size: The desired size of the window.
center: Specifies whether to center the padding or not.
Returns:
A tuple containing the padded ArrowSeries and the offset value.
"""
if not center:
return series, 0
offset_left = window_size // 2
# subtract one if window_size is even
offset_right = offset_left - (window_size % 2 == 0)
pad_left = pa.array([None] * offset_left, type=series._type)
pad_right = pa.array([None] * offset_right, type=series._type)
concat = pa.concat_arrays([pad_left, *series.native.chunks, pad_right])
return series._with_native(concat), offset_left + offset_right
def cast_to_comparable_string_types(
*chunked_arrays: ChunkedArrayAny, separator: str
) -> tuple[Iterator[ChunkedArrayAny], ScalarAny]:
# Ensure `chunked_arrays` are either all `string` or all `large_string`.
dtype = (
pa.string() # (PyArrow default)
if not any(pa.types.is_large_string(ca.type) for ca in chunked_arrays)
else pa.large_string()
)
return (ca.cast(dtype) for ca in chunked_arrays), lit(separator, dtype)
class ArrowSeriesNamespace(_SeriesNamespace["ArrowSeries", "ChunkedArrayAny"]):
def __init__(self, series: ArrowSeries, /) -> None:
self._compliant_series = series
|