1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
from __future__ import annotations
from functools import partial
from typing import (
TYPE_CHECKING,
Any,
Container,
Iterable,
Mapping,
Protocol,
Sequence,
overload,
)
from narwhals._compliant.typing import (
CompliantExprT,
CompliantFrameT,
CompliantLazyFrameT,
DepthTrackingExprT,
EagerDataFrameT,
EagerExprT,
EagerSeriesT,
LazyExprT,
NativeFrameT,
NativeFrameT_co,
)
from narwhals._utils import (
exclude_column_names,
get_column_names,
passthrough_column_names,
)
from narwhals.dependencies import is_numpy_array_2d
if TYPE_CHECKING:
from typing_extensions import TypeAlias
from narwhals._compliant.selectors import CompliantSelectorNamespace
from narwhals._compliant.when_then import CompliantWhen, EagerWhen
from narwhals._utils import Implementation, Version
from narwhals.dtypes import DType
from narwhals.schema import Schema
from narwhals.typing import (
ConcatMethod,
Into1DArray,
IntoDType,
NonNestedLiteral,
_2DArray,
)
Incomplete: TypeAlias = Any
__all__ = ["CompliantNamespace", "EagerNamespace"]
class CompliantNamespace(Protocol[CompliantFrameT, CompliantExprT]):
_implementation: Implementation
_backend_version: tuple[int, ...]
_version: Version
def all(self) -> CompliantExprT:
return self._expr.from_column_names(get_column_names, context=self)
def col(self, *column_names: str) -> CompliantExprT:
return self._expr.from_column_names(
passthrough_column_names(column_names), context=self
)
def exclude(self, excluded_names: Container[str]) -> CompliantExprT:
return self._expr.from_column_names(
partial(exclude_column_names, names=excluded_names), context=self
)
def nth(self, *column_indices: int) -> CompliantExprT:
return self._expr.from_column_indices(*column_indices, context=self)
def len(self) -> CompliantExprT: ...
def lit(self, value: NonNestedLiteral, dtype: IntoDType | None) -> CompliantExprT: ...
def all_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def any_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def sum_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def mean_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def min_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def max_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def concat(
self, items: Iterable[CompliantFrameT], *, how: ConcatMethod
) -> CompliantFrameT: ...
def when(
self, predicate: CompliantExprT
) -> CompliantWhen[CompliantFrameT, Incomplete, CompliantExprT]: ...
def concat_str(
self, *exprs: CompliantExprT, separator: str, ignore_nulls: bool
) -> CompliantExprT: ...
@property
def selectors(self) -> CompliantSelectorNamespace[Any, Any]: ...
@property
def _expr(self) -> type[CompliantExprT]: ...
class DepthTrackingNamespace(
CompliantNamespace[CompliantFrameT, DepthTrackingExprT],
Protocol[CompliantFrameT, DepthTrackingExprT],
):
def all(self) -> DepthTrackingExprT:
return self._expr.from_column_names(
get_column_names, function_name="all", context=self
)
def col(self, *column_names: str) -> DepthTrackingExprT:
return self._expr.from_column_names(
passthrough_column_names(column_names), function_name="col", context=self
)
def exclude(self, excluded_names: Container[str]) -> DepthTrackingExprT:
return self._expr.from_column_names(
partial(exclude_column_names, names=excluded_names),
function_name="exclude",
context=self,
)
class LazyNamespace(
CompliantNamespace[CompliantLazyFrameT, LazyExprT],
Protocol[CompliantLazyFrameT, LazyExprT, NativeFrameT_co],
):
@property
def _lazyframe(self) -> type[CompliantLazyFrameT]: ...
def from_native(self, data: NativeFrameT_co | Any, /) -> CompliantLazyFrameT:
if self._lazyframe._is_native(data):
return self._lazyframe.from_native(data, context=self)
else: # pragma: no cover
msg = f"Unsupported type: {type(data).__name__!r}"
raise TypeError(msg)
class EagerNamespace(
DepthTrackingNamespace[EagerDataFrameT, EagerExprT],
Protocol[EagerDataFrameT, EagerSeriesT, EagerExprT, NativeFrameT],
):
@property
def _dataframe(self) -> type[EagerDataFrameT]: ...
@property
def _series(self) -> type[EagerSeriesT]: ...
def when(
self, predicate: EagerExprT
) -> EagerWhen[EagerDataFrameT, EagerSeriesT, EagerExprT]: ...
def from_native(self, data: Any, /) -> EagerDataFrameT | EagerSeriesT:
if self._dataframe._is_native(data):
return self._dataframe.from_native(data, context=self)
elif self._series._is_native(data):
return self._series.from_native(data, context=self)
msg = f"Unsupported type: {type(data).__name__!r}"
raise TypeError(msg)
@overload
def from_numpy(self, data: Into1DArray, /, schema: None = ...) -> EagerSeriesT: ...
@overload
def from_numpy(
self,
data: _2DArray,
/,
schema: Mapping[str, DType] | Schema | Sequence[str] | None,
) -> EagerDataFrameT: ...
def from_numpy(
self,
data: Into1DArray | _2DArray,
/,
schema: Mapping[str, DType] | Schema | Sequence[str] | None = None,
) -> EagerDataFrameT | EagerSeriesT:
if is_numpy_array_2d(data):
return self._dataframe.from_numpy(data, schema=schema, context=self)
return self._series.from_numpy(data, context=self)
def _concat_diagonal(self, dfs: Sequence[NativeFrameT], /) -> NativeFrameT: ...
def _concat_horizontal(
self, dfs: Sequence[NativeFrameT | Any], /
) -> NativeFrameT: ...
def _concat_vertical(self, dfs: Sequence[NativeFrameT], /) -> NativeFrameT: ...
def concat(
self, items: Iterable[EagerDataFrameT], *, how: ConcatMethod
) -> EagerDataFrameT:
dfs = [item.native for item in items]
if how == "horizontal":
native = self._concat_horizontal(dfs)
elif how == "vertical":
native = self._concat_vertical(dfs)
elif how == "diagonal":
native = self._concat_diagonal(dfs)
else: # pragma: no cover
raise NotImplementedError
return self._dataframe.from_native(native, context=self)
|