summaryrefslogtreecommitdiff
path: root/Eigen/src/UmfPackSupport/UmfPackSupport.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/UmfPackSupport/UmfPackSupport.h')
-rw-r--r--Eigen/src/UmfPackSupport/UmfPackSupport.h642
1 files changed, 642 insertions, 0 deletions
diff --git a/Eigen/src/UmfPackSupport/UmfPackSupport.h b/Eigen/src/UmfPackSupport/UmfPackSupport.h
new file mode 100644
index 0000000..e3a333f
--- /dev/null
+++ b/Eigen/src/UmfPackSupport/UmfPackSupport.h
@@ -0,0 +1,642 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_UMFPACKSUPPORT_H
+#define EIGEN_UMFPACKSUPPORT_H
+
+// for compatibility with super old version of umfpack,
+// not sure this is really needed, but this is harmless.
+#ifndef SuiteSparse_long
+#ifdef UF_long
+#define SuiteSparse_long UF_long
+#else
+#error neither SuiteSparse_long nor UF_long are defined
+#endif
+#endif
+
+namespace Eigen {
+
+/* TODO extract L, extract U, compute det, etc... */
+
+// generic double/complex<double> wrapper functions:
+
+
+ // Defaults
+inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, int)
+{ umfpack_di_defaults(control); }
+
+inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, int)
+{ umfpack_zi_defaults(control); }
+
+inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, SuiteSparse_long)
+{ umfpack_dl_defaults(control); }
+
+inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long)
+{ umfpack_zl_defaults(control); }
+
+// Report info
+inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int)
+{ umfpack_di_report_info(control, info);}
+
+inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, int)
+{ umfpack_zi_report_info(control, info);}
+
+inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long)
+{ umfpack_dl_report_info(control, info);}
+
+inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, SuiteSparse_long)
+{ umfpack_zl_report_info(control, info);}
+
+// Report status
+inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, int)
+{ umfpack_di_report_status(control, status);}
+
+inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, int)
+{ umfpack_zi_report_status(control, status);}
+
+inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long)
+{ umfpack_dl_report_status(control, status);}
+
+inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, SuiteSparse_long)
+{ umfpack_zl_report_status(control, status);}
+
+// report control
+inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, int)
+{ umfpack_di_report_control(control);}
+
+inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, int)
+{ umfpack_zi_report_control(control);}
+
+inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, SuiteSparse_long)
+{ umfpack_dl_report_control(control);}
+
+inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long)
+{ umfpack_zl_report_control(control);}
+
+// Free numeric
+inline void umfpack_free_numeric(void **Numeric, double, int)
+{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }
+
+inline void umfpack_free_numeric(void **Numeric, std::complex<double>, int)
+{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
+
+inline void umfpack_free_numeric(void **Numeric, double, SuiteSparse_long)
+{ umfpack_dl_free_numeric(Numeric); *Numeric = 0; }
+
+inline void umfpack_free_numeric(void **Numeric, std::complex<double>, SuiteSparse_long)
+{ umfpack_zl_free_numeric(Numeric); *Numeric = 0; }
+
+// Free symbolic
+inline void umfpack_free_symbolic(void **Symbolic, double, int)
+{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
+
+inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, int)
+{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
+
+inline void umfpack_free_symbolic(void **Symbolic, double, SuiteSparse_long)
+{ umfpack_dl_free_symbolic(Symbolic); *Symbolic = 0; }
+
+inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, SuiteSparse_long)
+{ umfpack_zl_free_symbolic(Symbolic); *Symbolic = 0; }
+
+// Symbolic
+inline int umfpack_symbolic(int n_row,int n_col,
+ const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
+ const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
+{
+ return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
+}
+
+inline int umfpack_symbolic(int n_row,int n_col,
+ const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
+ const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
+{
+ return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
+}
+inline SuiteSparse_long umfpack_symbolic( SuiteSparse_long n_row,SuiteSparse_long n_col,
+ const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void **Symbolic,
+ const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
+{
+ return umfpack_dl_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
+}
+
+inline SuiteSparse_long umfpack_symbolic( SuiteSparse_long n_row,SuiteSparse_long n_col,
+ const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex<double> Ax[], void **Symbolic,
+ const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
+{
+ return umfpack_zl_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
+}
+
+// Numeric
+inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
+ void *Symbolic, void **Numeric,
+ const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
+{
+ return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
+}
+
+inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
+ void *Symbolic, void **Numeric,
+ const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
+{
+ return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
+}
+inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[],
+ void *Symbolic, void **Numeric,
+ const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
+{
+ return umfpack_dl_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
+}
+
+inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex<double> Ax[],
+ void *Symbolic, void **Numeric,
+ const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
+{
+ return umfpack_zl_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
+}
+
+// solve
+inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
+ double X[], const double B[], void *Numeric,
+ const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
+{
+ return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
+}
+
+inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
+ std::complex<double> X[], const std::complex<double> B[], void *Numeric,
+ const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
+{
+ return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
+}
+
+inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[],
+ double X[], const double B[], void *Numeric,
+ const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
+{
+ return umfpack_dl_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
+}
+
+inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex<double> Ax[],
+ std::complex<double> X[], const std::complex<double> B[], void *Numeric,
+ const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
+{
+ return umfpack_zl_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
+}
+
+// Get Lunz
+inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
+{
+ return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
+}
+
+inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
+{
+ return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
+}
+
+inline SuiteSparse_long umfpack_get_lunz( SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col,
+ SuiteSparse_long *nz_udiag, void *Numeric, double)
+{
+ return umfpack_dl_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
+}
+
+inline SuiteSparse_long umfpack_get_lunz( SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col,
+ SuiteSparse_long *nz_udiag, void *Numeric, std::complex<double>)
+{
+ return umfpack_zl_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
+}
+
+// Get Numeric
+inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
+ int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
+{
+ return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
+}
+
+inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
+ int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
+{
+ double& lx0_real = numext::real_ref(Lx[0]);
+ double& ux0_real = numext::real_ref(Ux[0]);
+ double& dx0_real = numext::real_ref(Dx[0]);
+ return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
+ Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
+}
+inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[],
+ SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
+{
+ return umfpack_dl_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
+}
+
+inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex<double> Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex<double> Ux[],
+ SuiteSparse_long P[], SuiteSparse_long Q[], std::complex<double> Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
+{
+ double& lx0_real = numext::real_ref(Lx[0]);
+ double& ux0_real = numext::real_ref(Ux[0]);
+ double& dx0_real = numext::real_ref(Dx[0]);
+ return umfpack_zl_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
+ Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
+}
+
+// Get Determinant
+inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], int)
+{
+ return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
+}
+
+inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], int)
+{
+ double& mx_real = numext::real_ref(*Mx);
+ return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
+}
+
+inline SuiteSparse_long umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], SuiteSparse_long)
+{
+ return umfpack_dl_get_determinant(Mx,Ex,NumericHandle,User_Info);
+}
+
+inline SuiteSparse_long umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], SuiteSparse_long)
+{
+ double& mx_real = numext::real_ref(*Mx);
+ return umfpack_zl_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
+}
+
+
+/** \ingroup UmfPackSupport_Module
+ * \brief A sparse LU factorization and solver based on UmfPack
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a LU factorization
+ * using the UmfPack library. The sparse matrix A must be squared and full rank.
+ * The vectors or matrices X and B can be either dense or sparse.
+ *
+ * \warning The input matrix A should be in a \b compressed and \b column-major form.
+ * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ *
+ * \implsparsesolverconcept
+ *
+ * \sa \ref TutorialSparseSolverConcept, class SparseLU
+ */
+template<typename _MatrixType>
+class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
+{
+ protected:
+ typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
+ using Base::m_isInitialized;
+ public:
+ using Base::_solve_impl;
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef Matrix<Scalar,Dynamic,1> Vector;
+ typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
+ typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
+ typedef SparseMatrix<Scalar> LUMatrixType;
+ typedef SparseMatrix<Scalar,ColMajor,StorageIndex> UmfpackMatrixType;
+ typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef;
+ enum {
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ public:
+
+ typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl;
+ typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo;
+
+ UmfPackLU()
+ : m_dummy(0,0), mp_matrix(m_dummy)
+ {
+ init();
+ }
+
+ template<typename InputMatrixType>
+ explicit UmfPackLU(const InputMatrixType& matrix)
+ : mp_matrix(matrix)
+ {
+ init();
+ compute(matrix);
+ }
+
+ ~UmfPackLU()
+ {
+ if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(), StorageIndex());
+ if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar(), StorageIndex());
+ }
+
+ inline Index rows() const { return mp_matrix.rows(); }
+ inline Index cols() const { return mp_matrix.cols(); }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful,
+ * \c NumericalIssue if the matrix.appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return m_info;
+ }
+
+ inline const LUMatrixType& matrixL() const
+ {
+ if (m_extractedDataAreDirty) extractData();
+ return m_l;
+ }
+
+ inline const LUMatrixType& matrixU() const
+ {
+ if (m_extractedDataAreDirty) extractData();
+ return m_u;
+ }
+
+ inline const IntColVectorType& permutationP() const
+ {
+ if (m_extractedDataAreDirty) extractData();
+ return m_p;
+ }
+
+ inline const IntRowVectorType& permutationQ() const
+ {
+ if (m_extractedDataAreDirty) extractData();
+ return m_q;
+ }
+
+ /** Computes the sparse Cholesky decomposition of \a matrix
+ * Note that the matrix should be column-major, and in compressed format for best performance.
+ * \sa SparseMatrix::makeCompressed().
+ */
+ template<typename InputMatrixType>
+ void compute(const InputMatrixType& matrix)
+ {
+ if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(),StorageIndex());
+ if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex());
+ grab(matrix.derived());
+ analyzePattern_impl();
+ factorize_impl();
+ }
+
+ /** Performs a symbolic decomposition on the sparcity of \a matrix.
+ *
+ * This function is particularly useful when solving for several problems having the same structure.
+ *
+ * \sa factorize(), compute()
+ */
+ template<typename InputMatrixType>
+ void analyzePattern(const InputMatrixType& matrix)
+ {
+ if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(),StorageIndex());
+ if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex());
+
+ grab(matrix.derived());
+
+ analyzePattern_impl();
+ }
+
+ /** Provides the return status code returned by UmfPack during the numeric
+ * factorization.
+ *
+ * \sa factorize(), compute()
+ */
+ inline int umfpackFactorizeReturncode() const
+ {
+ eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()");
+ return m_fact_errorCode;
+ }
+
+ /** Provides access to the control settings array used by UmfPack.
+ *
+ * If this array contains NaN's, the default values are used.
+ *
+ * See UMFPACK documentation for details.
+ */
+ inline const UmfpackControl& umfpackControl() const
+ {
+ return m_control;
+ }
+
+ /** Provides access to the control settings array used by UmfPack.
+ *
+ * If this array contains NaN's, the default values are used.
+ *
+ * See UMFPACK documentation for details.
+ */
+ inline UmfpackControl& umfpackControl()
+ {
+ return m_control;
+ }
+
+ /** Performs a numeric decomposition of \a matrix
+ *
+ * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
+ *
+ * \sa analyzePattern(), compute()
+ */
+ template<typename InputMatrixType>
+ void factorize(const InputMatrixType& matrix)
+ {
+ eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
+ if(m_numeric)
+ umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex());
+
+ grab(matrix.derived());
+
+ factorize_impl();
+ }
+
+ /** Prints the current UmfPack control settings.
+ *
+ * \sa umfpackControl()
+ */
+ void printUmfpackControl()
+ {
+ umfpack_report_control(m_control.data(), Scalar(),StorageIndex());
+ }
+
+ /** Prints statistics collected by UmfPack.
+ *
+ * \sa analyzePattern(), compute()
+ */
+ void printUmfpackInfo()
+ {
+ eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
+ umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar(),StorageIndex());
+ }
+
+ /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization).
+ *
+ * \sa analyzePattern(), compute()
+ */
+ void printUmfpackStatus() {
+ eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
+ umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar(),StorageIndex());
+ }
+
+ /** \internal */
+ template<typename BDerived,typename XDerived>
+ bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
+
+ Scalar determinant() const;
+
+ void extractData() const;
+
+ protected:
+
+ void init()
+ {
+ m_info = InvalidInput;
+ m_isInitialized = false;
+ m_numeric = 0;
+ m_symbolic = 0;
+ m_extractedDataAreDirty = true;
+
+ umfpack_defaults(m_control.data(), Scalar(),StorageIndex());
+ }
+
+ void analyzePattern_impl()
+ {
+ m_fact_errorCode = umfpack_symbolic(internal::convert_index<StorageIndex>(mp_matrix.rows()),
+ internal::convert_index<StorageIndex>(mp_matrix.cols()),
+ mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
+ &m_symbolic, m_control.data(), m_umfpackInfo.data());
+
+ m_isInitialized = true;
+ m_info = m_fact_errorCode ? InvalidInput : Success;
+ m_analysisIsOk = true;
+ m_factorizationIsOk = false;
+ m_extractedDataAreDirty = true;
+ }
+
+ void factorize_impl()
+ {
+
+ m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
+ m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data());
+
+ m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue;
+ m_factorizationIsOk = true;
+ m_extractedDataAreDirty = true;
+ }
+
+ template<typename MatrixDerived>
+ void grab(const EigenBase<MatrixDerived> &A)
+ {
+ mp_matrix.~UmfpackMatrixRef();
+ ::new (&mp_matrix) UmfpackMatrixRef(A.derived());
+ }
+
+ void grab(const UmfpackMatrixRef &A)
+ {
+ if(&(A.derived()) != &mp_matrix)
+ {
+ mp_matrix.~UmfpackMatrixRef();
+ ::new (&mp_matrix) UmfpackMatrixRef(A);
+ }
+ }
+
+ // cached data to reduce reallocation, etc.
+ mutable LUMatrixType m_l;
+ StorageIndex m_fact_errorCode;
+ UmfpackControl m_control;
+ mutable UmfpackInfo m_umfpackInfo;
+
+ mutable LUMatrixType m_u;
+ mutable IntColVectorType m_p;
+ mutable IntRowVectorType m_q;
+
+ UmfpackMatrixType m_dummy;
+ UmfpackMatrixRef mp_matrix;
+
+ void* m_numeric;
+ void* m_symbolic;
+
+ mutable ComputationInfo m_info;
+ int m_factorizationIsOk;
+ int m_analysisIsOk;
+ mutable bool m_extractedDataAreDirty;
+
+ private:
+ UmfPackLU(const UmfPackLU& ) { }
+};
+
+
+template<typename MatrixType>
+void UmfPackLU<MatrixType>::extractData() const
+{
+ if (m_extractedDataAreDirty)
+ {
+ // get size of the data
+ StorageIndex lnz, unz, rows, cols, nz_udiag;
+ umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
+
+ // allocate data
+ m_l.resize(rows,(std::min)(rows,cols));
+ m_l.resizeNonZeros(lnz);
+
+ m_u.resize((std::min)(rows,cols),cols);
+ m_u.resizeNonZeros(unz);
+
+ m_p.resize(rows);
+ m_q.resize(cols);
+
+ // extract
+ umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
+ m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
+ m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
+
+ m_extractedDataAreDirty = false;
+ }
+}
+
+template<typename MatrixType>
+typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
+{
+ Scalar det;
+ umfpack_get_determinant(&det, 0, m_numeric, 0, StorageIndex());
+ return det;
+}
+
+template<typename MatrixType>
+template<typename BDerived,typename XDerived>
+bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
+{
+ Index rhsCols = b.cols();
+ eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
+ eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
+ eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
+
+ Scalar* x_ptr = 0;
+ Matrix<Scalar,Dynamic,1> x_tmp;
+ if(x.innerStride()!=1)
+ {
+ x_tmp.resize(x.rows());
+ x_ptr = x_tmp.data();
+ }
+ for (int j=0; j<rhsCols; ++j)
+ {
+ if(x.innerStride()==1)
+ x_ptr = &x.col(j).coeffRef(0);
+ StorageIndex errorCode = umfpack_solve(UMFPACK_A,
+ mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
+ x_ptr, &b.const_cast_derived().col(j).coeffRef(0),
+ m_numeric, m_control.data(), m_umfpackInfo.data());
+ if(x.innerStride()!=1)
+ x.col(j) = x_tmp;
+ if (errorCode!=0)
+ return false;
+ }
+
+ return true;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_UMFPACKSUPPORT_H