#include #include #include #include #include #include #include #include #include #include #include #include #include "protocol.c" #define LINE_MAX 1024 #define MAX_USERS 1000 #define MAX_PATH 50 typedef struct station { int seekIndex; char* filePath; } station_t; typedef struct user { int udpPort; int stationNum; int sockfd; pthread_t streamThread; } user_t; /* For safe condition variable usage, must use a boolean predicate and */ /* a mutex with the condition. */ int count = 0; pthread_cond_t cond = PTHREAD_COND_INITIALIZER; pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t station_mutex = PTHREAD_MUTEX_INITIALIZER; const char *port; int num_stations; int start_threads = 0; int max_active_users = 0; pthread_mutex_t mutex_user_data = PTHREAD_MUTEX_INITIALIZER; // array from index to user_data user_t *user_data; int sockfd_to_user[MAX_USERS]; // stations array pointer station_t *station_data; void *send_udp_packet_routine(void* arg); void *select_thread(void* arg); void *synchronization_thread(void* arg); int parse(char buffer[LINE_MAX], char *tokens[LINE_MAX / 2]); void *print_info_routine(void *arg); void *get_in_addr(struct sockaddr *sa); void *init_user(int sockfd); void *update_user_udpPort(int sockfd, int udpPort); void *update_user_station(int sockfd, int stationNum); void *print_user_data(int sockfd); void destroy_user(int sockfd); void send_announce_reply(int fd, int station_num); void send_invalid_command_reply(int fd, size_t message_size, char* message); // void *load_file(void* arg); int main(int argc, char *argv[]) { // threads to control reading files at chunks while the other threads sleep // station_data = malloc(sizeof(station_t) * NUM_STATIONS); // check and assign arguments if (argc < 3) { fprintf(stderr,"usage: ./snowcast_server [file 1] [file 2] ... \n"); exit(1); } port = argv[1]; num_stations = argc - 2; // printf("port: %s\n", port); // printf("num_stations: %d\n", num_stations); // init stations size_t totalSize = 0; // get size to malloc for (int i = 2; i < argc; i++) { // printf("file: %s\n", argv[i]); totalSize += sizeof(int) + strlen(argv[i]); } station_data = malloc(totalSize); // assign the stations for (int i = 2; i < argc; i++) { station_data[i - 2] = (station_t) { 0, argv[i]}; } // print all indexes in station data // for (int i = 0; i < num_stations; i++) // { // printf("station %d: %s\n", i, station_data[i].filePath); // } // make array of user data user_data = malloc(sizeof(user_t) * max_active_users); if (!user_data) { perror("malloc"); return 1; } // make and start "select" thread that manages: // 1) new connections, 2) requests from current connections, 3)cloing connections pthread_t s_thread; pthread_create(&s_thread, NULL, select_thread, NULL); // start syncchronization thread to broadcast stations pthread_t sync_thread; pthread_create(&sync_thread, NULL, synchronization_thread, NULL); // command line interface char input[LINE_MAX]; memset(input, 0, LINE_MAX); char *tokens[LINE_MAX / 2]; while (read(STDIN_FILENO, input, LINE_MAX) > 0) { // init tokens memset(tokens, 0, (LINE_MAX / 2) * sizeof(char *)); // if 0, all whitespace if (!parse(input, tokens)) continue; char *command = tokens[0]; // if q, shutdown! if (!strcmp(command, "q")) { printf("Exiting.\n"); // TODO: exit better than break break; } // if p, print info else if (!strcmp(command, "p")) { // get the file descriptor int print_fd = 0; // see if there is a file path char *output_file_path = tokens[1]; if (output_file_path != NULL) { if ((print_fd = open(output_file_path, O_CREAT | O_WRONLY | O_TRUNC, S_IRWXU)) == -1) { perror("open"); continue; } } else { print_fd = STDOUT_FILENO; } // printf("print_fd: %d\n", print_fd); pthread_t print_info_thread; pthread_create(&print_info_thread, NULL, print_info_routine, print_fd); // note - this file descriptor is closed in the thread } else if (!strcmp(command, "u")) { // print all user data for (int i = 0; i < max_active_users; i++) { print_user_data(i); } } } return 0; } void write_int_to_fd(int fd, int n) { int l = snprintf(NULL, 0, "%d", n); char *num = malloc(l + 1); if (!num) { perror("malloc"); return; } snprintf(num, l + 1, "%d", n); if (write(fd, num, strlen(num)) == -1) { perror("write"); } free(num); } void *print_info_routine(void *arg) { int print_fd = (int) arg; // printf("thread print_fd: %d\n", print_fd); // printf("num_stations: %d\n", num_stations); for (int i = 0; i < num_stations; i++) { write_int_to_fd(print_fd, i); char *comma = ","; write(print_fd, comma, strlen(comma)); // write file path char* file_path = station_data[i].filePath; write(print_fd, file_path, strlen(file_path)); for (int j = 0; j < max_active_users; j++) { if (!user_data[j].sockfd || user_data[j].sockfd == -1) continue; if (user_data[j].stationNum == i) { char *localhost_ip = ",127.0.0.1:"; write(print_fd, localhost_ip, strlen(localhost_ip)); // write udpPort write_int_to_fd(print_fd, user_data[j].udpPort); } } // wrtie new line char *newline = "\n"; write(print_fd, newline, strlen(newline)); } if (print_fd != STDOUT_FILENO) close(print_fd); return (NULL); } int send_all_udp(int udp_sockfd, char *buf, int *len, struct addrinfo *thread_res) { int MAX_PACKET_SIZE = 512; int total = 0; // how many bytes we've sent int bytesleft = *len; // how many we have left to send int n; while(total < *len) { n = sendto(udp_sockfd, buf+total, MAX_PACKET_SIZE, 0, thread_res->ai_addr, thread_res->ai_addrlen); // thread_res->ai_addr, thread_res->ai_addrlen)) == -1; if (n == -1) { break; } total += n; bytesleft -= n; } *len = total; // return number actually sent here return n==-1?-1:0; // return -1 on failure, 0 on success } /* Make the manager routine */ void *send_udp_packet_routine(void *arg) { // unpack args int user_index = (int) arg; // printf("thread : user_index: %d\n", user_index); // print user data // print_user_data(user_index); // declare vairables to be used int did_work = 1; pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER; int s; int udp_sockfd; struct addrinfo thread_hints, *thread_res, *thread_servinfo; int error_code; // TODO: add error checking on these calls*** // setup hints memset(&thread_hints, 0, sizeof thread_hints); thread_hints.ai_family = AF_INET; // use IPv4 only thread_hints.ai_socktype = SOCK_DGRAM; thread_hints.ai_flags = AI_PASSIVE; // fill in my IP for me // setup the socket for client listener DATAGRAM (udp) // cover the port integer to a string int int_port = user_data[user_index].udpPort; int length = snprintf( NULL, 0, "%d", int_port ); char* port = malloc( length + 1 ); if (!port) { perror("malloc"); return (NULL); } snprintf( port, length + 1, "%d", int_port ); sprintf(port, "%d", int_port); if (error_code = getaddrinfo(NULL, port, &thread_hints, &thread_servinfo) != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(error_code)); return (NULL); } free(port); // loop through all the results and make a socket for(thread_res = thread_servinfo; thread_res != NULL; thread_res = thread_res->ai_next) { if ((udp_sockfd = socket(thread_res->ai_family, thread_res->ai_socktype, thread_res->ai_protocol)) == -1) { perror("talker: socket"); continue; } break; } if (udp_sockfd == NULL) { fprintf(stderr, "talker: failed to create socket\n"); return (NULL); } // bind(udp_sockfd, thread_res->ai_addr, thread_res->ai_addrlen); // freeaddrinfo(thread_servinfo); while (1) { // wait for pthread_mutex_lock(&m); did_work = 0; while (!start_threads) { pthread_cond_wait(&cond, &m); } int station_num = user_data[user_index].stationNum; if (station_num == -1) { did_work = 1; } if (!did_work) { // sendto a random string of data to the user int station_num = user_data[user_index].stationNum; char *data = station_data[station_num].filePath; // printf("load data: thread %d \n", user_index); // get file path char* file_path = station_data[station_num].filePath; // get current seek chunk int stream_fd = open(file_path, O_RDONLY); if (stream_fd == -1) { perror("open"); return (NULL); } int current_chunk = station_data[station_num].seekIndex; if (lseek(stream_fd, current_chunk, SEEK_SET) == -1) { perror("fseek"); return (NULL); } size_t BYTES_PER_SECOND = 16*1024; // read 1000 bytes of the file char file_buffer[BYTES_PER_SECOND]; if (read(stream_fd, file_buffer, BYTES_PER_SECOND) == -1) { perror("fread"); return (NULL); } close(stream_fd); // printf("send data: thread %d \n", user_index); // int numbytes; // if ((numbytes = sendto(udp_sockfd, data, strlen(data), 0, // thread_res->ai_addr, thread_res->ai_addrlen)) == -1) { // perror("talker: sendto"); // return (NULL); // } // print the size of the file_buffer // printf("size of file_buffer: %lu\n", sizeof(file_buffer)); int bytes_sent = sizeof(file_buffer); if (send_all_udp(udp_sockfd, file_buffer, &bytes_sent, thread_res) == -1) { perror("send_all_udp"); printf("We only sent %d bytes because of the error!\n", bytes_sent); } // printf("We sent all %d bytes!\n", bytes_sent); did_work = 1; usleep(400000); } pthread_mutex_unlock(&m); usleep(100000); } return NULL; } void *send_announce_routine(void *arg) { // unpack args int station_num = (int) arg; // send the announce messages for (int i = 0; i < max_active_users; i++) { // if (user_data[i].streamThread == NULL) { // break; // } if (user_data[i].sockfd == 0 || user_data[i].sockfd == -1) { continue; } // print_user_data(i); // update the station of each user if (user_data[i].stationNum == station_num) { // printf("sending announce to user %d\n", i); send_announce_reply(user_data[i].sockfd, station_num); } } } void *synchronization_thread(void *arg) { int c = 0; while (1) { start_threads = 1; // printf("\nbroadcast %d\n", c++); pthread_cond_broadcast(&cond); usleep(2000); start_threads = 0; // printf("before loop"); // update file seek index for each station size_t BYTES_PER_SECOND = 16*1024; // print num_stations // printf("num_stations: %d\n", num_stations); for (int i = 0; i < num_stations; i++) { // printf("checking station %d\n", i); // get size of file struct stat f_info; // int file_fd = open(station_data[i].filePath, O_RDONLY); // if (file_fd == -1) { // perror("open"); // return (NULL); // } if (stat(station_data[i].filePath, &f_info) == -1) { perror("fstat"); return (NULL); } size_t size = f_info.st_size; // fclose(file_fd); // if (size == -1) { // perror("ftell"); // return (NULL); // } station_data[i].seekIndex += BYTES_PER_SECOND; // if the seek index is greater than the size of the file, reset it if (station_data[i].seekIndex >= size) { station_data[i].seekIndex = 0; // printf("resetting station %d\n", i); pthread_t send_announce_thread; pthread_create(&send_announce_thread, NULL, send_announce_routine, (void *)i); } } usleep(2000); usleep(1000000-4000); } } void *select_thread(void *arg) { fd_set master; // master file descriptor list fd_set read_fds; // temp file descriptor list for select() int fdmax; // maximum file descriptor number int listener; // listening socket descriptor int newfd; // newly accept()ed socket descriptor struct sockaddr_storage remoteaddr; // client address socklen_t addrlen; char buf[256]; // buffer for client data int nbytes; char remoteIP[INET6_ADDRSTRLEN]; int yes=1; // for setsockopt() SO_REUSEADDR, below int i, j, rv; struct addrinfo hints, *ai, *p; // const char* port = argv[1]; FD_ZERO(&master); // clear the master and temp sets FD_ZERO(&read_fds); // LISTENER: get us a socket and bind it memset(&hints, 0, sizeof hints); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE; if ((rv = getaddrinfo(NULL, port, &hints, &ai)) != 0) { fprintf(stderr, "snowcast_server: %s\n", gai_strerror(rv)); exit(1); } for(p = ai; p != NULL; p = p->ai_next) { listener = socket(p->ai_family, p->ai_socktype, p->ai_protocol); if (listener < 0) { continue; } // lose the pesky "address already in use" error message setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)); if (bind(listener, p->ai_addr, p->ai_addrlen) < 0) { close(listener); continue; } break; } // if we got here, it means we didn't get bound if (p == NULL) { fprintf(stderr, "snowcast_server: failed to bind\n"); exit(2); } freeaddrinfo(ai); // all done with this // listen if (listen(listener, 10) == -1) { perror("listen"); exit(3); } // add the listener to the master set FD_SET(listener, &master); // keep track of the biggest file descriptor fdmax = listener; // so far, it's this one while(1) { read_fds = master; // copy it if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) { perror("select"); exit(4); } // run through the existing connections looking for data to read for(i = 0; i <= fdmax; i++) { if (FD_ISSET(i, &read_fds)) { // we got one!! if (i == listener) { // handle new connections addrlen = sizeof remoteaddr; newfd = accept(listener, (struct sockaddr *)&remoteaddr, &addrlen); if (newfd == -1) { perror("accept"); } else { FD_SET(newfd, &master); // add to master set if (newfd > fdmax) { // keep track of the max fdmax = newfd; } // printf("selectserver: new connection from %s on " // "socket %d\n.", // inet_ntop(remoteaddr.ss_family, // get_in_addr((struct sockaddr*)&remoteaddr), // remoteIP, INET6_ADDRSTRLEN), // newfd); // init user with this newfd init_user(newfd); } } else { // handle data from a client uint8_t command_type = -1; if ((nbytes = recv(i, &command_type, 1, 0)) <= 0) { // got error or connection closed by client if (nbytes == 0) { // connection closed // printf("selectserver: socket %d hung up\n", i); } else { perror("recv"); } close(i); // bye! FD_CLR(i, &master); // remove from master set // remove user from data structures destroy_user(i); } else { // we got some data from a client if (command_type == 0) { // we got a Hello commmand // get the udp port uint16_t udp_port = -1; int bytes_to_read = sizeof(uint16_t); if (recv_all(i, &udp_port, &bytes_to_read) == -1) { perror("recv_all"); exit(1); } udp_port = ntohs(udp_port); // check if user has a udpPort, if so, close connection if (user_data[sockfd_to_user[i]].udpPort != -1) { // send back in invalid command char * message = "must not sent more than one Hello message"; send_invalid_command_reply(i, strlen(message), message); // drop connection upon invalid command close(i); FD_CLR(i, &master); destroy_user(i); continue; } // printf("udpPort (from Hello) for new connection is %d.\n", udp_port); // update udp port of user update_user_udpPort(i, udp_port); // send the welcome message to client struct Welcome welcome; welcome.replyType = 2; welcome.numStations = htons(num_stations); int bytes_to_send = sizeof(struct Welcome); if (send_all(i, &welcome, &bytes_to_send) == -1) perror("send_all"); } else if (command_type == 1) { // we got a SetStation command // get the station number uint16_t station_number = -1; int bytes_to_read = sizeof(uint16_t); if (recv_all(i, &station_number, &bytes_to_read) == -1) { perror("recv_all"); exit(1); } station_number = ntohs(station_number); // check if user has a udpPort to stream to if (user_data[sockfd_to_user[i]].udpPort == -1) { // send back in invalid command char * message = "must send Hello message first"; send_invalid_command_reply(i, strlen(message), message); // drop connection upon invalid command close(i); FD_CLR(i, &master); destroy_user(i); continue; } // check if station num is in range if (station_number >= num_stations || station_number < 0) { // send back in invalid command char * message = "station number out of range"; send_invalid_command_reply(i, strlen(message), message); // drop connection upon invalid command close(i); FD_CLR(i, &master); destroy_user(i); continue; } // printf("setting station to %d\n", ntohs(command.number)); // update station of user update_user_station(i, station_number); send_announce_reply(i, station_number); } else { // send back in invalid command char * message = "invalid command"; send_invalid_command_reply(i, strlen(message), message); // drop connection upon invalid command close(i); FD_CLR(i, &master); destroy_user(i); } } } // END handle data from client } // END got new incoming connection } // END looping through file descriptors } // END for(;;)--and you thought it would never end! } void *init_user(int sockfd) { // add the user to the list of user data pthread_mutex_lock(&mutex_user_data); // this is to save memory space. // in general, the displacement of 4 is where a user "used to be" // int user_index = max_active_users++; // int running_index = 0; // while(running_index < max_active_users) // { // if (user_data[running_index++].sockfd == -1) // { // user_index = running_index; // break; // } // // printf("reusing memory\n"); // } int running_index = 0; while(running_index < max_active_users) { if (user_data[running_index].sockfd == -1) { break; } running_index++; } if (running_index == max_active_users) { // printf("reached max active users\n"); // printf("making new memory\n"); max_active_users++; // TODO: FIX SO THAT IT USES CURRENT USERS, NOT MAX_ACTIVE_USERS FOT THE RESIZE user_t *more_users = realloc(user_data, sizeof(user_t) * max_active_users); if (!more_users) { perror("realloc"); exit(1); } user_data = more_users; } // map TCP sockfd to this user index user_data[running_index] = (user_t){-1, -1, sockfd, -1}; sockfd_to_user[sockfd] = running_index; // free(user_stream_threads); pthread_mutex_unlock(&mutex_user_data); } void *update_user_udpPort(int sockfd, int udpPort) { pthread_mutex_lock(&mutex_user_data); // get the user user_t *user = &user_data[sockfd_to_user[sockfd]]; // set the udpPort user->udpPort = udpPort; // start the stream thread, now that we have the udpPort pthread_create(&user->streamThread, NULL, send_udp_packet_routine, (void *)sockfd_to_user[sockfd]); pthread_mutex_unlock(&mutex_user_data); } void *update_user_station(int sockfd, int stationNum) { pthread_mutex_lock(&mutex_user_data); user_data[sockfd_to_user[sockfd]].stationNum = stationNum; pthread_mutex_unlock(&mutex_user_data); } void *print_user_data(int index) { printf("udpPort: %d, stationNum: %d, sockfd: %d, threadId:%d\n", user_data[index].udpPort, user_data[index].stationNum, user_data[index].sockfd, user_data[index].streamThread); } void destroy_user(int sockfd) { pthread_mutex_lock(&mutex_user_data); // stop the thread streaming to the user // TODO: close the FD in the stream thread pthread_cancel(user_data[sockfd_to_user[sockfd]].streamThread); // close(user_data[sockfd_to_user[sockfd]].udpPort); // pthread_kill(user_data[sockfd_to_user[sockfd]].streamThread, SIGINT); // "remove" the user from the list of user data user_data[sockfd_to_user[sockfd]] = (user_t) {-1, -1, -1, -1}; // map sockfd to -1 sockfd_to_user[sockfd] = -1; // close(sockfd); pthread_mutex_unlock(&mutex_user_data); } void *get_in_addr(struct sockaddr *sa) { if (sa->sa_family == AF_INET) { return &(((struct sockaddr_in*)sa)->sin_addr); } return &(((struct sockaddr_in6*)sa)->sin6_addr); } void send_announce_reply(int fd, int station_num) { char* file_path = station_data[station_num].filePath; int len_file_path = strlen(file_path); char *send_buffer = malloc(len_file_path+2); if (!send_buffer) { perror("malloc"); return; } send_buffer[0] = 3; send_buffer[1] = len_file_path; memcpy(send_buffer + 2, file_path, len_file_path); // printf("buffer: %s\n", send_buffer); size_t bytes_to_send = len_file_path + 2; if (send_all(fd, send_buffer, &bytes_to_send) == -1) perror("send_all"); // print the number of bytes sent // printf("sent %d bytes\n", bytes_to_send); free(send_buffer); } void send_invalid_command_reply(int fd, size_t message_size, char* message) { char *send_buffer = malloc(message_size+2); if (!send_buffer) { perror("malloc"); return; } // type and payload size send_buffer[0] = 4; send_buffer[1] = message_size; memcpy(send_buffer + 2, message, message_size); // printf("buffer: %s\n", send_buffer); int bytes_to_send = message_size + 2; if (send_all(fd, send_buffer, &bytes_to_send) == -1) perror("send"); // print the number of bytes sent // printf("sent %d bytes\n", bytessent); free(send_buffer); } // Parses a buffer into tokens, from cs33 :) int parse(char buffer[LINE_MAX], char *tokens[LINE_MAX / 2]) { const char *regex = " \n\t\f\r"; char *current_token = strtok(buffer, regex); if (current_token == NULL) return 0; for (int i = 0; current_token != NULL; i++) { tokens[i] = current_token; current_token = strtok(NULL, regex); } return 1; } // int send_all(int s, char *buf, int *len) // { // int total = 0; // how many bytes we've sent // int bytesleft = *len; // how many we have left to send // int n; // while(total < *len) { // n = send(s, buf+total, bytesleft, 0); // if (n == -1) { break; } // total += n; // bytesleft -= n; // } // *len = total; // return number actually sent here // return n==-1?-1:0; // return -1 on failure, 0 on success // } // int recv_all(int sock, char *buffer, int total_size) // { // int total_bytes_read = 0; // int to_read = total_size; // char *ptr = buffer; // while (to_read > 0) { // int bytes_read = recv(sock, ptr, to_read, 0); // if (bytes_read <= 0) { // if (bytes_read != 0) { // perror("recv"); // } // return -1; // } // to_read -= bytes_read; // ptr += bytes_read; // total_bytes_read += bytes_read; // } // return total_bytes_read; // }