diff options
author | bobzel <zzzman@gmail.com> | 2025-07-01 09:58:22 -0400 |
---|---|---|
committer | bobzel <zzzman@gmail.com> | 2025-07-01 09:58:22 -0400 |
commit | b3e9d7473e46bd05baf978607cbc60dfc32a71b0 (patch) | |
tree | 38e43461f82569a245d40a93b5fef395ca71004d | |
parent | 496381c2f07031043c2330844bbcd09a0fc10b9d (diff) | |
parent | a7eff29530d6e95058fee3eda6a71a7d168dc913 (diff) |
Merge branch 'agent-paper-main' into joanne-tutorialagent
-rw-r--r-- | src/server/chunker/pdf_chunker.py | 41 |
1 files changed, 32 insertions, 9 deletions
diff --git a/src/server/chunker/pdf_chunker.py b/src/server/chunker/pdf_chunker.py index e34753176..04d9f51a4 100644 --- a/src/server/chunker/pdf_chunker.py +++ b/src/server/chunker/pdf_chunker.py @@ -701,20 +701,43 @@ class Document: :return: The generated summary of the document. """ - num_clusters = min(10, len(self.chunks)) # Set number of clusters for KMeans, capped at 10 - kmeans = KMeans(n_clusters=num_clusters, random_state=42) # Initialize KMeans with 10 clusters - doc_chunks = [chunk['values'] for chunk in self.chunks if 'values' in chunk] # Extract embeddings - cluster_labels = kmeans.fit_predict(doc_chunks) # Assign each chunk to a cluster + # num_clusters = min(10, len(self.chunks)) # Set number of clusters for KMeans, capped at 10 + # kmeans = KMeans(n_clusters=num_clusters, random_state=42) # Initialize KMeans with 10 clusters + # doc_chunks = [chunk['values'] for chunk in self.chunks if 'values' in chunk] # Extract embeddings + # cluster_labels = kmeans.fit_predict(doc_chunks) # Assign each chunk to a cluster + + doc_chunks = [chunk['values'] for chunk in self.chunks if 'values' in chunk] + if not doc_chunks: + raise ValueError("No valid embedded chunks to summarize.") + + # Remove duplicates (e.g., from OCR-ed blank pages or repeated captions) + unique_chunks = np.unique(np.array(doc_chunks), axis=0) + + # Dynamically scale number of clusters to available signal + num_clusters = min(10, len(unique_chunks)) + kmeans = KMeans(n_clusters=num_clusters, random_state=42).fit(unique_chunks) + + # Predict cluster labels for original chunks (not just unique ones) + cluster_labels = kmeans.predict(np.array(doc_chunks)) + # Select representative chunks from each cluster selected_chunks = [] for i in range(num_clusters): - cluster_chunks = [chunk for chunk, label in zip(self.chunks, cluster_labels) if label == i] # Get all chunks in this cluster - cluster_embs = [emb for emb, label in zip(doc_chunks, cluster_labels) if label == i] # Get embeddings for this cluster + # cluster_chunks = [chunk for chunk, label in zip(self.chunks, cluster_labels) if label == i] # Get all chunks in this cluster + # cluster_embs = [emb for emb, label in zip(doc_chunks, cluster_labels) if label == i] # Get embeddings for this cluster + + cluster_idxs = np.where(cluster_labels == i)[0] + if len(cluster_idxs) == 0: + continue # skip empty clusters (shouldn't happen after downsizing) + centroid = kmeans.cluster_centers_[i] # Get the centroid of the cluster - distances = [np.linalg.norm(np.array(emb) - centroid) for emb in cluster_embs] # Compute distance to centroid - closest_chunk = cluster_chunks[np.argmin(distances)] # Select chunk closest to the centroid - selected_chunks.append(closest_chunk) + distances = [np.linalg.norm(doc_chunks[idx] - centroid) for idx in cluster_idxs] + closest_idx = cluster_idxs[int(np.argmin(distances))] + selected_chunks.append(self.chunks[closest_idx]) + # distances = [np.linalg.norm(np.array(emb) - centroid) for emb in cluster_embs] # Compute distance to centroid + # closest_chunk = cluster_chunks[np.argmin(distances)] # Select chunk closest to the centroid + # selected_chunks.append(closest_chunk) # Combine selected chunks into a summary combined_text = "\n\n".join([chunk['metadata']['text'] for chunk in selected_chunks]) # Concatenate chunk texts |