aboutsummaryrefslogtreecommitdiff
path: root/src/server/ApiManagers/AssistantManager.ts
diff options
context:
space:
mode:
authorNathan-SR <144961007+Nathan-SR@users.noreply.github.com>2025-03-04 04:32:50 -0500
committerNathan-SR <144961007+Nathan-SR@users.noreply.github.com>2025-03-04 04:32:50 -0500
commit95abdada5a275fc258fa72781f7f3c40c0b306ea (patch)
tree6d729cebe0937ae81108005de9895b5398d1f475 /src/server/ApiManagers/AssistantManager.ts
parent0a8f3739cf5c30852f18751a4c05d81e0dabe928 (diff)
parent215ad40efa2e343e290d18bffbc55884829f1a0d (diff)
Merge branch 'master' of https://github.com/brown-dash/Dash-Web into Merge
Diffstat (limited to 'src/server/ApiManagers/AssistantManager.ts')
-rw-r--r--src/server/ApiManagers/AssistantManager.ts841
1 files changed, 770 insertions, 71 deletions
diff --git a/src/server/ApiManagers/AssistantManager.ts b/src/server/ApiManagers/AssistantManager.ts
index b42314e41..4719541b9 100644
--- a/src/server/ApiManagers/AssistantManager.ts
+++ b/src/server/ApiManagers/AssistantManager.ts
@@ -1,13 +1,32 @@
+/**
+ * @file AssistantManager.ts
+ * @description This file defines the AssistantManager class, responsible for managing various
+ * API routes related to the Assistant functionality. It provides features such as file handling,
+ * web scraping, and integration with third-party APIs like OpenAI and Google Custom Search.
+ * It also handles job tracking and progress reporting for tasks like document creation and web scraping.
+ * Utility functions for path manipulation and file operations are included, along with
+ * a mechanism for handling retry logic during API calls.
+ */
+
+import { Readability } from '@mozilla/readability';
+import axios from 'axios';
+import { spawn } from 'child_process';
import * as fs from 'fs';
-import { createReadStream, writeFile } from 'fs';
+import { writeFile } from 'fs';
+import { google } from 'googleapis';
+import { JSDOM } from 'jsdom';
import OpenAI from 'openai';
import * as path from 'path';
+import * as puppeteer from 'puppeteer';
import { promisify } from 'util';
import * as uuid from 'uuid';
-import { filesDirectory, publicDirectory } from '../SocketData';
+import { AI_Document } from '../../client/views/nodes/chatbot/types/types';
+import { DashUploadUtils } from '../DashUploadUtils';
import { Method } from '../RouteManager';
+import { filesDirectory, publicDirectory } from '../SocketData';
import ApiManager, { Registration } from './ApiManager';
+// Enumeration of directories where different file types are stored
export enum Directory {
parsed_files = 'parsed_files',
images = 'images',
@@ -17,115 +36,795 @@ export enum Directory {
pdf_thumbnails = 'pdf_thumbnails',
audio = 'audio',
csv = 'csv',
+ chunk_images = 'chunk_images',
+ scrape_images = 'scrape_images',
}
+// In-memory job tracking
+const jobResults: { [key: string]: unknown } = {};
+const jobProgress: { [key: string]: unknown } = {};
+
+/**
+ * Constructs a normalized path to a file in the server's file system.
+ * @param directory The directory where the file is stored.
+ * @param filename The name of the file.
+ * @returns The full normalized path to the file.
+ */
export function serverPathToFile(directory: Directory, filename: string) {
return path.normalize(`${filesDirectory}/${directory}/${filename}`);
}
+/**
+ * Constructs a normalized path to a directory in the server's file system.
+ * @param directory The directory to access.
+ * @returns The full normalized path to the directory.
+ */
export function pathToDirectory(directory: Directory) {
return path.normalize(`${filesDirectory}/${directory}`);
}
+/**
+ * Constructs the client-accessible URL for a file.
+ * @param directory The directory where the file is stored.
+ * @param filename The name of the file.
+ * @returns The URL path to the file.
+ */
export function clientPathToFile(directory: Directory, filename: string) {
return `/files/${directory}/${filename}`;
}
+// Promisified versions of filesystem functions
const writeFileAsync = promisify(writeFile);
const readFileAsync = promisify(fs.readFile);
+/**
+ * Class responsible for handling various API routes related to the Assistant functionality.
+ * This class extends `ApiManager` and handles registration of routes and secure request handlers.
+ */
export default class AssistantManager extends ApiManager {
+ /**
+ * Registers all API routes and initializes necessary services like OpenAI and Google Custom Search.
+ * @param register The registration method to register routes and handlers.
+ */
protected initialize(register: Registration): void {
- const openai = new OpenAI({ apiKey: process.env.OPENAI_KEY, dangerouslyAllowBrowser: true });
+ // Initialize Google Custom Search API
+ const customsearch = google.customsearch('v1');
+ const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
+
+ // Register Wikipedia summary API route
+ register({
+ method: Method.POST,
+ subscription: '/getWikipediaSummary',
+ secureHandler: async ({ req, res }) => {
+ const { title } = req.body;
+ try {
+ // Fetch summary from Wikipedia using axios
+ const response = await axios.get('https://en.wikipedia.org/w/api.php', {
+ params: {
+ action: 'query',
+ list: 'search',
+ srsearch: title,
+ format: 'json',
+ },
+ });
+ const summary = response.data.query.search[0]?.snippet || 'No article found with that title.';
+ res.send({ text: summary });
+ } catch (error) {
+ console.error('Error retrieving Wikipedia summary:', error);
+ res.status(500).send({
+ error: 'Error retrieving article summary from Wikipedia.',
+ });
+ }
+ },
+ });
+ // Register an API route to retrieve web search results using Google Custom Search
+ // This route filters results by checking their x-frame-options headers for security purposes
register({
method: Method.POST,
- subscription: '/uploadPDFToVectorStore',
+ subscription: '/getWebSearchResults',
secureHandler: async ({ req, res }) => {
- const { urls, threadID, assistantID, vector_store_id } = req.body;
-
- const csvFilesIds: string[] = [];
- const otherFileIds: string[] = [];
- const allFileIds: string[] = [];
-
- const fileProcesses = urls.map(async (source: string) => {
- const fullPath = path.join(publicDirectory, source);
- const fileData = await openai.files.create({ file: createReadStream(fullPath), purpose: 'assistants' });
- allFileIds.push(fileData.id);
- if (source.endsWith('.csv')) {
- console.log(source);
- csvFilesIds.push(fileData.id);
+ const { query, max_results } = req.body;
+ const MIN_VALID_RESULTS_RATIO = 0.75; // 3/4 threshold
+ let startIndex = 1; // Start at the first result initially
+ const fetchSearchResults = async (start: number) => {
+ return customsearch.cse.list({
+ q: query,
+ cx: process.env._CLIENT_GOOGLE_SEARCH_ENGINE_ID,
+ key: process.env._CLIENT_GOOGLE_API_KEY,
+ safe: 'active',
+ num: max_results,
+ start, // This controls which result index the search starts from
+ });
+ };
+
+ const filterResultsByXFrameOptions = async (
+ results: {
+ url: string | null | undefined;
+ snippet: string | null | undefined;
+ }[]
+ ) => {
+ const filteredResults = await Promise.all(
+ results
+ .filter(result => result.url)
+ .map(async result => {
+ try {
+ const urlResponse = await axios.head(result.url!, { timeout: 5000 });
+ const xFrameOptions = urlResponse.headers['x-frame-options'];
+ if (xFrameOptions && xFrameOptions.toUpperCase() === 'SAMEORIGIN') {
+ return result;
+ }
+ } catch (error) {
+ console.error(`Error checking x-frame-options for URL: ${result.url}`, error);
+ }
+ return null; // Exclude the result if it doesn't match
+ })
+ );
+ return filteredResults.filter(result => result !== null); // Remove null results
+ };
+
+ try {
+ // Fetch initial search results
+ let response = await fetchSearchResults(startIndex);
+ const initialResults =
+ response.data.items?.map(item => ({
+ url: item.link,
+ snippet: item.snippet,
+ })) || [];
+
+ // Filter the initial results
+ let validResults = await filterResultsByXFrameOptions(initialResults);
+
+ // If valid results are less than 3/4 of max_results, fetch more results
+ while (validResults.length < max_results * MIN_VALID_RESULTS_RATIO) {
+ // Increment the start index by the max_results to fetch the next set of results
+ startIndex += max_results;
+ response = await fetchSearchResults(startIndex);
+
+ const additionalResults =
+ response.data.items?.map(item => ({
+ url: item.link,
+ snippet: item.snippet,
+ })) || [];
+
+ const additionalValidResults = await filterResultsByXFrameOptions(additionalResults);
+ validResults = [...validResults, ...additionalValidResults]; // Combine valid results
+
+ // Break if no more results are available
+ if (additionalValidResults.length === 0 || response.data.items?.length === 0) {
+ break;
+ }
+ }
+
+ // Return the filtered valid results
+ res.send({ results: validResults.slice(0, max_results) }); // Limit the results to max_results
+ } catch (error) {
+ console.error('Error performing web search:', error);
+ res.status(500).send({
+ error: 'Failed to perform web search',
+ });
+ }
+ },
+ });
+
+ /**
+ * Converts a video file to audio format using ffmpeg.
+ * @param videoPath The path to the input video file.
+ * @param outputAudioPath The path to the output audio file.
+ * @returns A promise that resolves when the conversion is complete.
+ */
+ function convertVideoToAudio(videoPath: string, outputAudioPath: string): Promise<void> {
+ return new Promise((resolve, reject) => {
+ const ffmpegProcess = spawn('ffmpeg', [
+ '-i',
+ videoPath, // Input file
+ '-vn', // No video
+ '-acodec',
+ 'pcm_s16le', // Audio codec
+ '-ac',
+ '1', // Number of audio channels
+ '-ar',
+ '16000', // Audio sampling frequency
+ '-f',
+ 'wav', // Output format
+ outputAudioPath, // Output file
+ ]);
+
+ ffmpegProcess.on('error', error => {
+ console.error('Error running ffmpeg:', error);
+ reject(error);
+ });
+
+ ffmpegProcess.on('close', code => {
+ if (code === 0) {
+ console.log('Audio extraction complete:', outputAudioPath);
+ resolve();
} else {
- openai.beta.vectorStores.files.create(vector_store_id, { file_id: fileData.id });
- otherFileIds.push(fileData.id);
+ reject(new Error(`ffmpeg exited with code ${code}`));
}
});
+ });
+ }
+
+ // Register an API route to process a media file (audio or video)
+ // Extracts audio from video files, transcribes the audio using OpenAI Whisper, and provides a summary
+ register({
+ method: Method.POST,
+ subscription: '/processMediaFile',
+ secureHandler: async ({ req, res }) => {
+ const { fileName } = req.body;
+
+ // Ensure the filename is provided
+ if (!fileName) {
+ res.status(400).send({ error: 'Filename is required' });
+ return;
+ }
+
+ try {
+ // Determine the file type and location
+ const isAudio = fileName.toLowerCase().endsWith('.mp3');
+ const directory = isAudio ? Directory.audio : Directory.videos;
+ const filePath = serverPathToFile(directory, fileName);
+
+ // Check if the file exists
+ if (!fs.existsSync(filePath)) {
+ res.status(404).send({ error: 'File not found' });
+ return;
+ }
+
+ console.log(`Processing ${isAudio ? 'audio' : 'video'} file: ${fileName}`);
+
+ // Step 1: Extract audio if it's a video
+ let audioPath = filePath;
+ if (!isAudio) {
+ const audioFileName = `${path.basename(fileName, path.extname(fileName))}.wav`;
+ audioPath = path.join(pathToDirectory(Directory.audio), audioFileName);
+
+ console.log('Extracting audio from video...');
+ await convertVideoToAudio(filePath, audioPath);
+ }
+
+ // Step 2: Transcribe audio using OpenAI Whisper
+ console.log('Transcribing audio...');
+ const transcription = await openai.audio.transcriptions.create({
+ file: fs.createReadStream(audioPath),
+ model: 'whisper-1',
+ response_format: 'verbose_json',
+ timestamp_granularities: ['segment'],
+ });
+
+ console.log('Audio transcription complete.');
+
+ // Step 3: Extract concise JSON
+ console.log('Extracting concise JSON...');
+ const originalSegments = transcription.segments?.map((segment, index) => ({
+ index: index.toString(),
+ text: segment.text,
+ start: segment.start,
+ end: segment.end,
+ }));
+
+ interface ConciseSegment {
+ text: string;
+ indexes: string[];
+ start: number | null;
+ end: number | null;
+ }
+
+ const combinedSegments = [];
+ let currentGroup: ConciseSegment = { text: '', indexes: [], start: null, end: null };
+ let currentDuration = 0;
+
+ originalSegments?.forEach(segment => {
+ const segmentDuration = segment.end - segment.start;
+
+ if (currentDuration + segmentDuration <= 4000) {
+ // Add segment to the current group
+ currentGroup.text += (currentGroup.text ? ' ' : '') + segment.text;
+ currentGroup.indexes.push(segment.index);
+ if (currentGroup.start === null) {
+ currentGroup.start = segment.start;
+ }
+ currentGroup.end = segment.end;
+ currentDuration += segmentDuration;
+ } else {
+ // Push the current group and start a new one
+ combinedSegments.push({ ...currentGroup });
+ currentGroup = {
+ text: segment.text,
+ indexes: [segment.index],
+ start: segment.start,
+ end: segment.end,
+ };
+ currentDuration = segmentDuration;
+ }
+ });
+
+ // Push the final group if it has content
+ if (currentGroup.text) {
+ combinedSegments.push({ ...currentGroup });
+ }
+ const lastSegment = combinedSegments[combinedSegments.length - 1];
+
+ // Check if the last segment is too short and combine it with the second last
+ if (combinedSegments.length > 1 && lastSegment.end && lastSegment.start) {
+ const secondLastSegment = combinedSegments[combinedSegments.length - 2];
+ const lastDuration = lastSegment.end - lastSegment.start;
+
+ if (lastDuration < 30) {
+ // Combine the last segment with the second last
+ secondLastSegment.text += (secondLastSegment.text ? ' ' : '') + lastSegment.text;
+ secondLastSegment.indexes = secondLastSegment.indexes.concat(lastSegment.indexes);
+ secondLastSegment.end = lastSegment.end;
+
+ // Remove the last segment from the array
+ combinedSegments.pop();
+ }
+ }
+
+ console.log('Segments combined successfully.');
+
+ console.log('Generating summary using GPT-4...');
+ const combinedText = combinedSegments.map(segment => segment.text).join(' ');
+
+ let summary = '';
+ try {
+ const completion = await openai.chat.completions.create({
+ messages: [{ role: 'system', content: `Summarize the following text in a concise paragraph:\n\n${combinedText}` }],
+ model: 'gpt-4o',
+ });
+ console.log('Summary generation complete.');
+ summary = completion.choices[0].message.content ?? 'Summary could not be generated.';
+ } catch (summaryError) {
+ console.error('Error generating summary:', summaryError);
+ summary = 'Summary could not be generated.';
+ }
+ // Step 5: Return the JSON result
+ res.send({ full: originalSegments, condensed: combinedSegments, summary });
+ } catch (error) {
+ console.error('Error processing media file:', error);
+ res.status(500).send({ error: 'Failed to process media file' });
+ }
+ },
+ });
+
+ // Axios instance with custom headers for scraping
+ const axiosInstance = axios.create({
+ headers: {
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
+ },
+ });
+
+ /**
+ * Utility function to introduce delay (used for retries).
+ * @param ms Delay in milliseconds.
+ */
+ const delay = (ms: number) => new Promise(resolve => setTimeout(resolve, ms));
+
+ /**
+ * Function to fetch a URL with retry logic, handling rate limits.
+ * Retries a request if it fails due to rate limits (HTTP status 429).
+ * @param url The URL to fetch.
+ * @param retries The number of retry attempts.
+ * @param backoff Initial backoff time in milliseconds.
+ */
+ const fetchWithRetry = async (url: string, retries = 3, backoff = 300): Promise<unknown> => {
+ try {
+ const response = await axiosInstance.get(url);
+ return response.data;
+ } catch (error) {
+ if (retries > 0 && (error as { response: { status: number } }).response?.status === 429) { // bcz: don't know the error type
+ console.log(`Rate limited. Retrying in ${backoff}ms...`);
+ await delay(backoff);
+ return fetchWithRetry(url, retries - 1, backoff * 2);
+ } // prettier-ignore
+ throw error;
+ }
+ };
+
+ // Register an API route to generate an image using OpenAI's DALL-E model
+ // Uploads the generated image to the server and provides a URL for access
+ register({
+ method: Method.POST,
+ subscription: '/generateImage',
+ secureHandler: async ({ req, res }) => {
+ const { image_prompt } = req.body;
+
+ if (!image_prompt) {
+ res.status(400).send({ error: 'No prompt provided' });
+ return;
+ }
+
+ try {
+ const image = await openai.images.generate({ model: 'dall-e-3', prompt: image_prompt, response_format: 'url' });
+ console.log(image);
+ const result = await DashUploadUtils.UploadImage(image.data[0].url!);
+
+ const url = image.data[0].url;
+
+ res.send({ result, url });
+ } catch (error) {
+ console.error('Error fetching the URL:', error);
+ res.status(500).send({
+ error: 'Failed to fetch the URL',
+ });
+ }
+ },
+ });
+
+ // Register an API route to fetch data from a URL using a proxy with retry logic
+ // Useful for bypassing rate limits or scraping inaccessible data
+ register({
+ method: Method.POST,
+ subscription: '/proxyFetch',
+ secureHandler: async ({ req, res }) => {
+ const { url } = req.body;
+
+ if (!url) {
+ res.status(400).send({ error: 'No URL provided' });
+ return;
+ }
+
+ try {
+ const data = await fetchWithRetry(url);
+ res.send({ data });
+ } catch (error) {
+ console.error('Error fetching the URL:', error);
+ res.status(500).send({
+ error: 'Failed to fetch the URL',
+ });
+ }
+ },
+ });
+
+ // Register an API route to scrape website content using Puppeteer and JSDOM
+ // Extracts and returns readable content from a given URL
+ register({
+ method: Method.POST,
+ subscription: '/scrapeWebsite',
+ secureHandler: async ({ req, res }) => {
+ const { url } = req.body;
try {
- await Promise.all(fileProcesses).then(() => {
- res.send({ vector_store_id: vector_store_id, openai_file_ids: allFileIds });
+ // Launch Puppeteer browser to navigate to the webpage
+ const browser = await puppeteer.launch({
+ args: ['--no-sandbox', '--disable-setuid-sandbox'],
});
+ const page = await browser.newPage();
+ await page.setUserAgent('Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36');
+ await page.goto(url, { waitUntil: 'networkidle2' });
+
+ // Extract HTML content
+ const htmlContent = await page.content();
+ await browser.close();
+
+ // Parse HTML content using JSDOM
+ const dom = new JSDOM(htmlContent, { url });
+
+ // Extract readable content using Mozilla's Readability API
+ const reader = new Readability(dom.window.document);
+ const article = reader.parse();
+
+ if (article) {
+ const plainText = article.textContent;
+ res.send({ website_plain_text: plainText });
+ } else {
+ res.status(500).send({ error: 'Failed to extract readable content' });
+ }
} catch (error) {
- res.status(500).send({ error: 'Failed to process files' + error });
+ console.error('Error scraping website:', error);
+ res.status(500).send({
+ error: 'Failed to scrape website',
+ });
}
},
});
+ // Register an API route to create a document and start a background job for processing
+ // Uses Python scripts to process files and generate document chunks for further use
register({
method: Method.POST,
- subscription: '/downloadFileFromOpenAI',
+ subscription: '/createDocument',
secureHandler: async ({ req, res }) => {
- const { file_id, file_name } = req.body;
- //let files_directory: string;
- let files_directory = '/files/openAIFiles/';
- switch (file_name.split('.').pop()) {
- case 'pdf':
- files_directory = '/files/pdfs/';
- break;
- case 'csv':
- files_directory = '/files/csv/';
- break;
- case 'png':
- case 'jpg':
- case 'jpeg':
- files_directory = '/files/images/';
- break;
- default:
- break;
- }
-
- const directory = path.join(publicDirectory, files_directory);
-
- if (!fs.existsSync(directory)) {
- fs.mkdirSync(directory);
- }
- const file = await openai.files.content(file_id);
- const new_file_name = `${uuid.v4()}-${file_name}`;
- const file_path = path.join(directory, new_file_name);
- const file_array_buffer = await file.arrayBuffer();
- const bufferView = new Uint8Array(file_array_buffer);
+ const { file_path } = req.body;
+ const public_path = path.join(publicDirectory, file_path); // Resolve the file path in the public directory
+ const file_name = path.basename(file_path); // Extract the file name from the path
+
try {
- const written_file = await writeFileAsync(file_path, bufferView);
- console.log(written_file);
- console.log(file_path);
- console.log(file_array_buffer);
- console.log(bufferView);
- const file_object = new File([bufferView], file_name);
- //DashUploadUtils.upload(file_object, 'openAIFiles');
- res.send({ file_path: path.join(files_directory, new_file_name) });
- /* res.send( {
- source: "file",
- result: {
- accessPaths: {
- agnostic: {client: path.join('/files/openAIFiles/', `${uuid.v4()}-${file_name}`)}
- },
- rawText: "",
- duration: 0,
- },
- } ); */
+ // Read the file data and encode it as base64
+ const file_data: string = fs.readFileSync(public_path, { encoding: 'base64' });
+
+ // Generate a unique job ID for tracking
+ const jobId = uuid.v4();
+
+ // Spawn the Python process and track its progress/output
+ // eslint-disable-next-line no-use-before-define
+ spawnPythonProcess(jobId, public_path);
+
+ // Send the job ID back to the client for tracking
+ res.send({ jobId });
} catch (error) {
- res.status(500).send({ error: 'Failed to write file' + error });
+ console.error('Error initiating document creation:', error);
+ res.status(500).send({
+ error: 'Failed to initiate document creation',
+ });
}
},
});
+
+ // Register an API route to check the progress of a document creation job
+ // Returns the current step and progress percentage
+ register({
+ method: Method.GET,
+ subscription: '/getProgress/:jobId',
+ secureHandler: async ({ req, res }) => {
+ const { jobId } = req.params; // Get the job ID from the URL parameters
+ // Check if the job progress is available
+ if (jobProgress[jobId]) {
+ res.json(jobProgress[jobId]);
+ } else {
+ res.json({
+ step: 'Processing Document...',
+ progress: '0',
+ });
+ }
+ },
+ });
+
+ // Register an API route to retrieve the final result of a document creation job
+ // Returns the processed data or an error status if the job is incomplete
+ register({
+ method: Method.GET,
+ subscription: '/getResult/:jobId',
+ secureHandler: async ({ req, res }) => {
+ const { jobId } = req.params;
+ if (jobResults[jobId]) {
+ const result = jobResults[jobId] as AI_Document & { status: string };
+
+ if (result.chunks && Array.isArray(result.chunks)) {
+ result.status = 'completed';
+ } else {
+ result.status = 'pending';
+ }
+ res.json(result);
+ } else {
+ res.status(202).send({ status: 'pending' });
+ }
+ },
+ });
+
+ // Register an API route to format chunks of text or images for structured display
+ // Converts raw chunk data into a structured format for frontend consumption
+ register({
+ method: Method.POST,
+ subscription: '/formatChunks',
+ secureHandler: async ({ req, res }) => {
+ const { relevantChunks } = req.body; // Get the relevant chunks from the request body
+
+ // Initialize an array to hold the formatted content
+ const content: { type: string; text?: string; image_url?: { url: string } }[] = [{ type: 'text', text: '<chunks>' }];
+
+ await Promise.all(
+ relevantChunks.map((chunk: { id: string; metadata: { type: string; text: TimeRanges; file_path: string } }) => {
+ // Format each chunk by adding its metadata and content
+ content.push({
+ type: 'text',
+ text: `<chunk chunk_id=${chunk.id} chunk_type="${chunk.metadata.type}">`,
+ });
+
+ // If the chunk is an image or table, read the corresponding file and encode it as base64
+ if (chunk.metadata.type === 'image' || chunk.metadata.type === 'table') {
+ try {
+ const filePath = path.join(pathToDirectory(Directory.chunk_images), chunk.metadata.file_path); // Get the file path
+ console.log(filePath);
+ readFileAsync(filePath).then(imageBuffer => {
+ const base64Image = imageBuffer.toString('base64'); // Convert the image to base64
+
+ // Add the base64-encoded image to the content array
+ if (base64Image) {
+ content.push({
+ type: 'image_url',
+ image_url: {
+ url: `data:image/jpeg;base64,${base64Image}`,
+ },
+ });
+ } else {
+ console.log(`Failed to encode image for chunk ${chunk.id}`);
+ }
+ });
+ } catch (error) {
+ console.error(`Error reading image file for chunk ${chunk.id}:`, error);
+ }
+ }
+
+ // Add the chunk's text content to the formatted content
+ content.push({ type: 'text', text: `${chunk.metadata.text}\n</chunk>\n` });
+ })
+ );
+
+ content.push({ type: 'text', text: '</chunks>' });
+
+ // Send the formatted content back to the client
+ res.send({ formattedChunks: content });
+ },
+ });
+
+ // Register an API route to create and save a CSV file on the server
+ // Writes the CSV content to a unique file and provides a URL for download
+ register({
+ method: Method.POST,
+ subscription: '/createCSV',
+ secureHandler: async ({ req, res }) => {
+ const { filename, data } = req.body;
+
+ // Validate that both the filename and data are provided
+ if (!filename || !data) {
+ res.status(400).send({ error: 'Filename and data fields are required.' });
+ return;
+ }
+
+ try {
+ // Generate a UUID for the file to ensure unique naming
+ const uuidv4 = uuid.v4();
+ const fullFilename = `${uuidv4}-${filename}`; // Prefix the file name with the UUID
+
+ // Get the full server path where the file will be saved
+ const serverFilePath = serverPathToFile(Directory.csv, fullFilename);
+
+ // Write the CSV data (which is a raw string) to the file
+ await writeFileAsync(serverFilePath, data, 'utf8');
+
+ // Construct the client-accessible URL for the file
+ const fileUrl = clientPathToFile(Directory.csv, fullFilename);
+
+ // Send the file URL and UUID back to the client
+ res.send({ fileUrl, id: uuidv4 });
+ } catch (error) {
+ console.error('Error creating CSV file:', error);
+ res.status(500).send({
+ error: 'Failed to create CSV file.',
+ });
+ }
+ },
+ });
+ }
+}
+
+/**
+ * Spawns a Python process to handle file processing tasks.
+ * @param jobId The job ID for tracking progress.
+ * @param file_name The name of the file to process.
+ * @param file_path The filepath of the file to process.
+ */
+function spawnPythonProcess(jobId: string, file_path: string) {
+ const venvPath = path.join(__dirname, '../chunker/venv');
+ const requirementsPath = path.join(__dirname, '../chunker/requirements.txt');
+ const pythonScriptPath = path.join(__dirname, '../chunker/pdf_chunker.py');
+
+ const outputDirectory = pathToDirectory(Directory.chunk_images);
+
+ function runPythonScript() {
+ const pythonPath = process.platform === 'win32' ? path.join(venvPath, 'Scripts', 'python') : path.join(venvPath, 'bin', 'python3');
+
+ const pythonProcess = spawn(pythonPath, [pythonScriptPath, jobId, file_path, outputDirectory]);
+
+ let pythonOutput = '';
+ let stderrOutput = '';
+
+ pythonProcess.stdout.on('data', data => {
+ pythonOutput += data.toString();
+ });
+
+ pythonProcess.stderr.on('data', data => {
+ stderrOutput += data.toString();
+ const lines = stderrOutput.split('\n');
+ stderrOutput = lines.pop() || ''; // Save the last partial line back to stderrOutput
+ lines.forEach(line => {
+ if (line.trim()) {
+ if (line.startsWith('PROGRESS:')) {
+ const jsonString = line.substring('PROGRESS:'.length);
+ try {
+ const parsedOutput = JSON.parse(jsonString);
+ if (parsedOutput.job_id && parsedOutput.progress !== undefined) {
+ jobProgress[parsedOutput.job_id] = {
+ step: parsedOutput.step,
+ progress: parsedOutput.progress,
+ };
+ } else if (parsedOutput.progress !== undefined) {
+ jobProgress[jobId] = {
+ step: parsedOutput.step,
+ progress: parsedOutput.progress,
+ };
+ }
+ } catch (err) {
+ console.error('Error parsing progress JSON:', jsonString, err);
+ }
+ } else {
+ // Log other stderr output
+ console.error('Python stderr:', line);
+ }
+ }
+ });
+ });
+
+ pythonProcess.on('close', code => {
+ if (code === 0) {
+ try {
+ const finalResult = JSON.parse(pythonOutput);
+ jobResults[jobId] = finalResult;
+ jobProgress[jobId] = { step: 'Complete', progress: 100 };
+ } catch (err) {
+ console.error('Error parsing final JSON result:', err);
+ jobResults[jobId] = { error: 'Failed to parse final result' };
+ }
+ } else {
+ console.error(`Python process exited with code ${code}`);
+ // Check if there was an error message in stderr
+ if (stderrOutput) {
+ // Try to parse the last line as JSON
+ const lines = stderrOutput.trim().split('\n');
+ const lastLine = lines[lines.length - 1];
+ try {
+ const errorOutput = JSON.parse(lastLine);
+ jobResults[jobId] = errorOutput;
+ } catch {
+ jobResults[jobId] = { error: 'Python process failed' };
+ }
+ } else {
+ jobResults[jobId] = { error: 'Python process failed' };
+ }
+ }
+ });
+ }
+ // Check if venv exists
+ if (!fs.existsSync(venvPath)) {
+ console.log('Virtual environment not found. Creating and setting up...');
+
+ // Create venv
+ const createVenvProcess = spawn('python', ['-m', 'venv', venvPath]);
+
+ createVenvProcess.on('close', code => {
+ if (code !== 0) {
+ console.error(`Failed to create virtual environment. Exit code: ${code}`);
+ return;
+ }
+
+ console.log('Virtual environment created. Installing requirements...');
+
+ // Determine the pip path based on the OS
+ const pipPath = process.platform === 'win32' ? path.join(venvPath, 'Scripts', 'pip.exe') : path.join(venvPath, 'bin', 'pip3'); // Try 'pip3' for Unix-like systems
+
+ if (!fs.existsSync(pipPath)) {
+ console.error(`pip executable not found at ${pipPath}`);
+ return;
+ }
+
+ // Install requirements
+ const installRequirementsProcess = spawn(pipPath, ['install', '-r', requirementsPath]);
+
+ installRequirementsProcess.stdout.on('data', data => {
+ console.log(`pip stdout: ${data}`);
+ });
+
+ installRequirementsProcess.stderr.on('data', data => {
+ console.error(`pip stderr: ${data}`);
+ });
+
+ installRequirementsProcess.on('error', error => {
+ console.error(`Error starting pip process: ${error}`);
+ });
+
+ installRequirementsProcess.on('close', closecode => {
+ if (closecode !== 0) {
+ console.error(`Failed to install requirements. Exit code: ${closecode}`);
+ return;
+ }
+
+ console.log('Requirements installed. Running Python script...');
+ runPythonScript();
+ });
+ });
+ } else {
+ console.log('Virtual environment found. Running Python script...');
+ runPythonScript();
}
}