diff options
author | alyssaf16 <alyssa_feinberg@brown.edu> | 2024-11-04 21:56:25 -0500 |
---|---|---|
committer | alyssaf16 <alyssa_feinberg@brown.edu> | 2024-11-04 21:56:25 -0500 |
commit | 1e4909f04fdcc4c0b3a60b8c75e8b687e2b63b8e (patch) | |
tree | 16fe239082c37cd4f7e10bbfa6964d13a458046a /src/server/chunker/pdf_chunker.py | |
parent | 95afe2c1093dc3229375c08e6684b3d9866ef7a2 (diff) | |
parent | 09d7d63d1f248a0bf1d36e4da804cbde5e12e209 (diff) |
Merge branch 'ajs-finalagent' into alyssa-agent
Diffstat (limited to 'src/server/chunker/pdf_chunker.py')
-rw-r--r-- | src/server/chunker/pdf_chunker.py | 70 |
1 files changed, 38 insertions, 32 deletions
diff --git a/src/server/chunker/pdf_chunker.py b/src/server/chunker/pdf_chunker.py index 4fe3b9dbf..48b2dbf97 100644 --- a/src/server/chunker/pdf_chunker.py +++ b/src/server/chunker/pdf_chunker.py @@ -54,8 +54,9 @@ def update_progress(job_id, step, progress_value): "step": step, "progress": progress_value } - print(json.dumps(progress_data), file=sys.stderr) # Use stderr for progress logs - sys.stderr.flush() # Ensure it's sent immediately + print(f"PROGRESS:{json.dumps(progress_data)}", file=sys.stderr) + sys.stderr.flush() + class ElementExtractor: @@ -63,13 +64,15 @@ class ElementExtractor: A class that uses a YOLO model to extract tables and images from a PDF page. """ - def __init__(self, output_folder: str): + def __init__(self, output_folder: str, doc_id: str): """ Initializes the ElementExtractor with the output folder for saving images and the YOLO model. :param output_folder: Path to the folder where extracted elements will be saved. """ - self.output_folder = output_folder + self.doc_id = doc_id + self.output_folder = os.path.join(output_folder, doc_id) + os.makedirs(self.output_folder, exist_ok=True) self.model = YOLO('keremberke/yolov8m-table-extraction') # Load YOLO model for table extraction self.model.overrides['conf'] = 0.25 # Set confidence threshold for detection self.model.overrides['iou'] = 0.45 # Set Intersection over Union (IoU) threshold @@ -116,17 +119,16 @@ class ElementExtractor: table_path = os.path.join(self.output_folder, table_filename) page_with_outline.save(table_path) - # Convert the full-page image with red outline to base64 - base64_data = self.image_to_base64(page_with_outline) + file_path_for_client = f"{self.doc_id}/{table_filename}" tables.append({ 'metadata': { "type": "table", "location": [x1 / img.width, y1 / img.height, x2 / img.width, y2 / img.height], - "file_path": table_path, + "file_path": file_path_for_client, "start_page": page_num, "end_page": page_num, - "base64_data": base64_data, + "base64_data": self.image_to_base64(page_with_outline) } }) @@ -175,18 +177,17 @@ class ElementExtractor: image_path = os.path.join(self.output_folder, image_filename) page_with_outline.save(image_path) - # Convert the full-page image with red outline to base64 - base64_data = self.image_to_base64(page_with_outline) + file_path_for_client = f"{self.doc_id}/{image_filename}" images.append({ 'metadata': { "type": "image", "location": [x1 / page.rect.width, y1 / page.rect.height, x2 / page.rect.width, y2 / page.rect.height], - "file_path": image_path, + "file_path": file_path_for_client, "start_page": page_num, "end_page": page_num, - "base64_data": base64_data, + "base64_data": self.image_to_base64(image) } }) @@ -268,7 +269,7 @@ class PDFChunker: The main class responsible for chunking PDF files into text and visual elements (tables/images). """ - def __init__(self, output_folder: str = "output", image_batch_size: int = 5) -> None: + def __init__(self, output_folder: str = "output", doc_id: str = '', image_batch_size: int = 5) -> None: """ Initializes the PDFChunker with an output folder and an element extractor for visual elements. @@ -278,7 +279,8 @@ class PDFChunker: self.client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY")) # Initialize the Anthropic API client self.output_folder = output_folder self.image_batch_size = image_batch_size # Batch size for image processing - self.element_extractor = ElementExtractor(output_folder) # Initialize the element extractor + self.doc_id = doc_id # Add doc_id + self.element_extractor = ElementExtractor(output_folder, doc_id) async def chunk_pdf(self, file_data: bytes, file_name: str, doc_id: str, job_id: str) -> List[Dict[str, Any]]: """ @@ -363,6 +365,7 @@ class PDFChunker: for j, elem in enumerate(batch, start=1): if j in summaries: elem['metadata']['text'] = re.sub(r'^(Image|Table):\s*', '', summaries[j]) + elem['metadata']['base64_data'] = '' processed_elements.append(elem) progress = ((i // image_batch_size) + 1) / total_batches * 100 # Calculate progress @@ -628,10 +631,11 @@ class PDFChunker: return summaries - except Exception: - #print(f"Error in batch_summarize_images: {str(e)}") - #print("Returning placeholder summaries") - return {number: "Error: No summary available" for number in images} + except Exception as e: + # Print errors to stderr so they don't interfere with JSON output + print(json.dumps({"error": str(e)}), file=sys.stderr) + sys.stderr.flush() + class DocumentType(Enum): """ @@ -664,7 +668,7 @@ class Document: Represents a document being processed, such as a PDF, handling chunking, embedding, and summarization. """ - def __init__(self, file_data: bytes, file_name: str, job_id: str): + def __init__(self, file_data: bytes, file_name: str, job_id: str, output_folder: str): """ Initialize the Document with file data, file name, and job ID. @@ -672,6 +676,7 @@ class Document: :param file_name: The name of the file being processed. :param job_id: The job ID associated with this document processing task. """ + self.output_folder = output_folder self.file_data = file_data self.file_name = file_name self.job_id = job_id @@ -680,14 +685,13 @@ class Document: self.chunks = [] # List to hold text and visual chunks self.num_pages = 0 # Number of pages in the document (if applicable) self.summary = "" # The generated summary for the document - self._process() # Start processing the document def _process(self): """ Process the document: extract chunks, embed them, and generate a summary. """ - pdf_chunker = PDFChunker(output_folder="output") # Initialize the PDF chunker + pdf_chunker = PDFChunker(output_folder=self.output_folder, doc_id=self.doc_id) # Initialize PDFChunker self.chunks = asyncio.run(pdf_chunker.chunk_pdf(self.file_data, self.file_name, self.doc_id, self.job_id)) # Extract chunks self.num_pages = self._get_pdf_pages() # Get the number of pages in the document @@ -796,8 +800,7 @@ class Document: "doc_id": self.doc_id }, indent=2) # Convert the document's attributes to JSON format - -def process_document(file_data, file_name, job_id): +def process_document(file_data, file_name, job_id, output_folder): """ Top-level function to process a document and return the JSON output. @@ -806,28 +809,30 @@ def process_document(file_data, file_name, job_id): :param job_id: The job ID for this document processing task. :return: The processed document's data in JSON format. """ - new_document = Document(file_data, file_name, job_id) # Create a new Document object - return new_document.to_json() # Return the document's JSON data - + new_document = Document(file_data, file_name, job_id, output_folder) + return new_document.to_json() def main(): """ Main entry point for the script, called with arguments from Node.js. """ - if len(sys.argv) != 4: - print(json.dumps({"error": "Invalid arguments"}), file=sys.stderr) # Print error if incorrect number of arguments + if len(sys.argv) != 5: + print(json.dumps({"error": "Invalid arguments"}), file=sys.stderr) return - job_id = sys.argv[1] # Get the job ID from command-line arguments - file_name = sys.argv[2] # Get the file name from command-line arguments - file_data = sys.argv[3] # Get the base64-encoded file data from command-line arguments + job_id = sys.argv[1] + file_name = sys.argv[2] + file_data = sys.argv[3] + output_folder = sys.argv[4] # Get the output folder from arguments try: + os.makedirs(output_folder, exist_ok=True) + # Decode the base64 file data file_bytes = base64.b64decode(file_data) # Process the document - document_result = process_document(file_bytes, file_name, job_id) + document_result = process_document(file_bytes, file_name, job_id, output_folder) # Pass output_folder # Output the final result as JSON to stdout print(document_result) @@ -839,5 +844,6 @@ def main(): sys.stderr.flush() + if __name__ == "__main__": main() # Execute the main function when the script is run |