aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/server/ApiManagers/AssistantManager.ts54
-rw-r--r--src/server/chunker/pdf_chunker.py41
2 files changed, 41 insertions, 54 deletions
diff --git a/src/server/ApiManagers/AssistantManager.ts b/src/server/ApiManagers/AssistantManager.ts
index cfa95cb4e..4d2068014 100644
--- a/src/server/ApiManagers/AssistantManager.ts
+++ b/src/server/ApiManagers/AssistantManager.ts
@@ -23,6 +23,7 @@ import { AI_Document } from '../../client/views/nodes/chatbot/types/types';
import { Method } from '../RouteManager';
import { filesDirectory, publicDirectory } from '../SocketData';
import ApiManager, { Registration } from './ApiManager';
+import { getServerPath } from '../../client/util/reportManager/reportManagerUtils';
// Enumeration of directories where different file types are stored
export enum Directory {
@@ -349,47 +350,16 @@ export default class AssistantManager extends ApiManager {
method: Method.GET,
subscription: '/getResult/:jobId',
secureHandler: async ({ req, res }) => {
- const { jobId } = req.params; // Get the job ID from the URL parameters
- // Check if the job result is available
+ const { jobId } = req.params;
if (jobResults[jobId]) {
const result = jobResults[jobId] as AI_Document & { status: string };
- // If the result contains image or table chunks, save the base64 data as image files
if (result.chunks && Array.isArray(result.chunks)) {
- await Promise.all(
- result.chunks.map(chunk => {
- if (chunk.metadata && (chunk.metadata.type === 'image' || chunk.metadata.type === 'table')) {
- const files_directory = '/files/chunk_images/';
- const directory = path.join(publicDirectory, files_directory);
-
- // Ensure the directory exists or create it
- if (!fs.existsSync(directory)) {
- fs.mkdirSync(directory);
- }
-
- const fileName = path.basename(chunk.metadata.file_path); // Get the file name from the path
- const filePath = path.join(directory, fileName); // Create the full file path
-
- // Check if the chunk contains base64 encoded data
- if (chunk.metadata.base64_data) {
- // Decode the base64 data and write it to a file
- const buffer = Buffer.from(chunk.metadata.base64_data, 'base64');
- fs.promises.writeFile(filePath, buffer).then(() => {
- // Update the file path in the chunk's metadata
- chunk.metadata.file_path = path.join(files_directory, fileName);
- chunk.metadata.base64_data = undefined; // Remove the base64 data from the metadata
- });
- } else {
- console.warn(`No base64_data found for chunk: ${fileName}`);
- }
- }
- })
- );
result.status = 'completed';
} else {
result.status = 'pending';
}
- res.json(result); // Send the result back to the client
+ res.json(result);
} else {
res.status(202).send({ status: 'pending' });
}
@@ -417,7 +387,7 @@ export default class AssistantManager extends ApiManager {
// If the chunk is an image or table, read the corresponding file and encode it as base64
if (chunk.metadata.type === 'image' || chunk.metadata.type === 'table') {
try {
- const filePath = serverPathToFile(Directory.chunk_images, chunk.metadata.file_path); // Get the file path
+ const filePath = path.join(pathToDirectory(Directory.chunk_images), chunk.metadata.file_path); // Get the file path
readFileAsync(filePath).then(imageBuffer => {
const base64Image = imageBuffer.toString('base64'); // Convert the image to base64
@@ -549,10 +519,24 @@ function spawnPythonProcess(jobId: string, file_name: string, file_data: string)
jobProgress[jobId] = { step: 'Complete', progress: 100 };
} catch (err) {
console.error('Error parsing final JSON result:', err);
+ jobResults[jobId] = { error: 'Failed to parse final result' };
}
} else {
console.error(`Python process exited with code ${code}`);
- jobResults[jobId] = { error: 'Python process failed' };
+ // Check if there was an error message in stderr
+ if (stderrOutput) {
+ // Try to parse the last line as JSON
+ const lines = stderrOutput.trim().split('\n');
+ const lastLine = lines[lines.length - 1];
+ try {
+ const errorOutput = JSON.parse(lastLine);
+ jobResults[jobId] = errorOutput;
+ } catch (err) {
+ jobResults[jobId] = { error: 'Python process failed' };
+ }
+ } else {
+ jobResults[jobId] = { error: 'Python process failed' };
+ }
}
});
}
diff --git a/src/server/chunker/pdf_chunker.py b/src/server/chunker/pdf_chunker.py
index 7a3244fbc..130987343 100644
--- a/src/server/chunker/pdf_chunker.py
+++ b/src/server/chunker/pdf_chunker.py
@@ -64,13 +64,15 @@ class ElementExtractor:
A class that uses a YOLO model to extract tables and images from a PDF page.
"""
- def __init__(self, output_folder: str):
+ def __init__(self, output_folder: str, doc_id: str):
"""
Initializes the ElementExtractor with the output folder for saving images and the YOLO model.
:param output_folder: Path to the folder where extracted elements will be saved.
"""
- self.output_folder = output_folder
+ self.doc_id = doc_id
+ self.output_folder = os.path.join(output_folder, doc_id)
+ os.makedirs(self.output_folder, exist_ok=True)
self.model = YOLO('keremberke/yolov8m-table-extraction') # Load YOLO model for table extraction
self.model.overrides['conf'] = 0.25 # Set confidence threshold for detection
self.model.overrides['iou'] = 0.45 # Set Intersection over Union (IoU) threshold
@@ -114,20 +116,18 @@ class ElementExtractor:
# Save the full page with the red outline
table_filename = f"table_page{page_num + 1}_{idx + 1}.png"
+ file_path_for_client = f"{self.doc_id}/{table_filename}"
table_path = os.path.join(self.output_folder, table_filename)
page_with_outline.save(table_path)
- # Convert the full-page image with red outline to base64
- base64_data = self.image_to_base64(page_with_outline)
-
tables.append({
'metadata': {
"type": "table",
"location": [x1 / img.width, y1 / img.height, x2 / img.width, y2 / img.height],
- "file_path": table_path,
+ "file_path": file_path_for_client,
"start_page": page_num,
"end_page": page_num,
- "base64_data": base64_data,
+ "base64_data": self.image_to_base64(page_with_outline)
}
})
@@ -173,21 +173,19 @@ class ElementExtractor:
# Save the full page with the red outline
image_filename = f"image_page{page_num + 1}_{img_index + 1}.png"
+ file_path_for_client = f"{self.doc_id}/{image_filename}"
image_path = os.path.join(self.output_folder, image_filename)
page_with_outline.save(image_path)
- # Convert the full-page image with red outline to base64
- base64_data = self.image_to_base64(page_with_outline)
-
images.append({
'metadata': {
"type": "image",
"location": [x1 / page.rect.width, y1 / page.rect.height, x2 / page.rect.width,
y2 / page.rect.height],
- "file_path": image_path,
+ "file_path": file_path_for_client,
"start_page": page_num,
"end_page": page_num,
- "base64_data": base64_data,
+ "base64_data": self.image_to_base64(image)
}
})
@@ -269,7 +267,7 @@ class PDFChunker:
The main class responsible for chunking PDF files into text and visual elements (tables/images).
"""
- def __init__(self, output_folder: str = "output", image_batch_size: int = 5) -> None:
+ def __init__(self, output_folder: str = "output", doc_id: str = '', image_batch_size: int = 5) -> None:
"""
Initializes the PDFChunker with an output folder and an element extractor for visual elements.
@@ -279,7 +277,8 @@ class PDFChunker:
self.client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY")) # Initialize the Anthropic API client
self.output_folder = output_folder
self.image_batch_size = image_batch_size # Batch size for image processing
- self.element_extractor = ElementExtractor(output_folder) # Initialize the element extractor
+ self.doc_id = doc_id # Add doc_id
+ self.element_extractor = ElementExtractor(output_folder, doc_id)
async def chunk_pdf(self, file_data: bytes, file_name: str, doc_id: str, job_id: str) -> List[Dict[str, Any]]:
"""
@@ -364,6 +363,7 @@ class PDFChunker:
for j, elem in enumerate(batch, start=1):
if j in summaries:
elem['metadata']['text'] = re.sub(r'^(Image|Table):\s*', '', summaries[j])
+ elem['metadata']['base64_data'] = ''
processed_elements.append(elem)
progress = ((i // image_batch_size) + 1) / total_batches * 100 # Calculate progress
@@ -629,10 +629,11 @@ class PDFChunker:
return summaries
- except Exception:
- #print(f"Error in batch_summarize_images: {str(e)}")
- #print("Returning placeholder summaries")
- return {number: "Error: No summary available" for number in images}
+ except Exception as e:
+ # Print errors to stderr so they don't interfere with JSON output
+ print(json.dumps({"error": str(e)}), file=sys.stderr)
+ sys.stderr.flush()
+
class DocumentType(Enum):
"""
@@ -688,7 +689,7 @@ class Document:
"""
Process the document: extract chunks, embed them, and generate a summary.
"""
- pdf_chunker = PDFChunker(output_folder=self.output_folder)
+ pdf_chunker = PDFChunker(output_folder=self.output_folder, doc_id=self.doc_id) # Initialize PDFChunker
self.chunks = asyncio.run(pdf_chunker.chunk_pdf(self.file_data, self.file_name, self.doc_id, self.job_id)) # Extract chunks
self.num_pages = self._get_pdf_pages() # Get the number of pages in the document
@@ -823,6 +824,8 @@ def main():
output_folder = sys.argv[4] # Get the output folder from arguments
try:
+ os.makedirs(output_folder, exist_ok=True)
+
# Decode the base64 file data
file_bytes = base64.b64decode(file_data)