diff options
-rw-r--r-- | src/client/cognitive_services/CognitiveServices.ts | 4 | ||||
-rw-r--r-- | src/server/index.ts | 6 |
2 files changed, 5 insertions, 5 deletions
diff --git a/src/client/cognitive_services/CognitiveServices.ts b/src/client/cognitive_services/CognitiveServices.ts index b23441552..7c660c347 100644 --- a/src/client/cognitive_services/CognitiveServices.ts +++ b/src/client/cognitive_services/CognitiveServices.ts @@ -269,12 +269,12 @@ export namespace CognitiveServices { //keyterms = ["father", "king"]; let args = { method: 'POST', uri: Utils.prepend("/recommender"), body: { keyphrases: keyterms }, json: true }; await requestPromise.post(args).then(async (wordvecs) => { - if (wordvecs.shape[0] > 0) { + if (wordvecs.length > 0) { console.log("successful vectorization!"); var vectorValues = new Set<number[]>(); wordvecs.forEach((wordvec: any) => { //console.log(wordvec.word); - vectorValues.add(wordvec.values as number[]); + vectorValues.add(wordvec as number[]); }); ClientRecommender.Instance.mean(vectorValues, dataDoc, mainDoc); } // adds document to internal doc set diff --git a/src/server/index.ts b/src/server/index.ts index ac803a253..49957775d 100644 --- a/src/server/index.ts +++ b/src/server/index.ts @@ -692,9 +692,9 @@ recommender.testModel(); app.post("/recommender", async (req, res) => { let keyphrases = req.body.keyphrases; let wordvecs = await recommender.vectorize(keyphrases); - let embedding: number[][] = []; - if (wordvecs && wordvecs.array()) { - wordvecs.array().then(array => embedding = array as number[][]); + let embedding: Float32Array = new Float32Array(); + if (wordvecs && wordvecs.dataSync()) { + embedding = wordvecs.dataSync() as Float32Array; } res.send(embedding); }); |