aboutsummaryrefslogtreecommitdiff
path: root/src/client/ClientRecommender.ts
diff options
context:
space:
mode:
Diffstat (limited to 'src/client/ClientRecommender.ts')
-rw-r--r--src/client/ClientRecommender.ts101
1 files changed, 101 insertions, 0 deletions
diff --git a/src/client/ClientRecommender.ts b/src/client/ClientRecommender.ts
new file mode 100644
index 000000000..7ff79ab50
--- /dev/null
+++ b/src/client/ClientRecommender.ts
@@ -0,0 +1,101 @@
+import { Doc } from "../new_fields/Doc";
+import { StrCast } from "../new_fields/Types";
+import { List } from "../new_fields/List";
+import { CognitiveServices } from "./cognitive_services/CognitiveServices";
+
+
+var assert = require('assert');
+
+export class ClientRecommender {
+
+ static Instance: ClientRecommender;
+ private docVectors: Set<number[]>;
+
+ constructor() {
+ //console.log("creating client recommender...");
+ ClientRecommender.Instance = this;
+ this.docVectors = new Set<number[]>();
+ }
+
+
+ /***
+ * Computes the cosine similarity between two vectors in Euclidean space.
+ */
+
+ private distance(vector1: number[], vector2: number[]) {
+ assert(vector1.length === vector2.length, "Vectors are not the same length");
+ var dotproduct = 0;
+ var mA = 0;
+ var mB = 0;
+ for (let i = 0; i < vector1.length; i++) { // here you missed the i++
+ dotproduct += (vector1[i] * vector2[i]);
+ mA += (vector1[i] * vector1[i]);
+ mB += (vector2[i] * vector2[i]);
+ }
+ mA = Math.sqrt(mA);
+ mB = Math.sqrt(mB);
+ var similarity = (dotproduct) / ((mA) * (mB)); // here you needed extra brackets
+ return similarity;
+ }
+
+ /***
+ * Computes the mean of a set of vectors
+ */
+
+ public mean(paragraph: Set<number[]>) {
+ const n = 200;
+ const num_words = paragraph.size;
+ let meanVector = new Array<number>(n).fill(0); // mean vector
+ paragraph.forEach((wordvec: number[]) => {
+ for (let i = 0; i < n; i++) {
+ meanVector[i] += wordvec[i];
+ }
+ });
+ meanVector = meanVector.map(x => x / num_words);
+ this.addToDocSet(meanVector);
+ return meanVector;
+ }
+
+ private addToDocSet(vector: number[]) {
+ if (this.docVectors) {
+ this.docVectors.add(vector);
+ }
+ }
+
+ /***
+ * Uses Cognitive Services to extract keywords from a document
+ */
+
+ public async extractText(dataDoc: Doc, extDoc: Doc) {
+ let data = StrCast(dataDoc.title);
+ //console.log(data);
+ let converter = (results: any) => {
+ let keyterms = new List<string>();
+ results.documents.forEach((doc: any) => {
+ let keyPhrases = doc.keyPhrases;
+ keyPhrases.map((kp: string) => keyterms.push(kp));
+ });
+ return keyterms;
+ };
+ await CognitiveServices.Text.Manager.analyzer(extDoc, ["key words"], data, converter);
+ }
+
+ /***
+ * Creates distance matrix for all Documents analyzed
+ */
+
+ public createDistanceMatrix(documents: Set<number[]> = this.docVectors) {
+ const documents_list = Array.from(documents);
+ const n = documents_list.length;
+ var matrix = new Array(n).fill(0).map(() => new Array(n).fill(0));
+ for (let i = 0; i < n; i++) {
+ var doc1 = documents_list[i];
+ for (let j = 0; j < n; j++) {
+ var doc2 = documents_list[j];
+ matrix[i][j] = this.distance(doc1, doc2);
+ }
+ }
+ return matrix;
+ }
+
+} \ No newline at end of file