diff options
Diffstat (limited to 'src/client/views/nodes/chatbot/vectorstore')
| -rw-r--r-- | src/client/views/nodes/chatbot/vectorstore/Vectorstore.ts | 258 |
1 files changed, 258 insertions, 0 deletions
diff --git a/src/client/views/nodes/chatbot/vectorstore/Vectorstore.ts b/src/client/views/nodes/chatbot/vectorstore/Vectorstore.ts new file mode 100644 index 000000000..07a2b73bc --- /dev/null +++ b/src/client/views/nodes/chatbot/vectorstore/Vectorstore.ts @@ -0,0 +1,258 @@ +import { Pinecone, Index, IndexList, PineconeRecord, RecordMetadata, QueryResponse } from '@pinecone-database/pinecone'; +import { CohereClient } from 'cohere-ai'; +import { EmbedResponse } from 'cohere-ai/api'; +import dotenv from 'dotenv'; +import { RAGChunk, AI_Document, CHUNK_TYPE } from '../types/types'; +import { Doc } from '../../../../../fields/Doc'; +import { CsvCast, PDFCast, StrCast } from '../../../../../fields/Types'; +import { Networking } from '../../../../Network'; + +dotenv.config(); + +/** + * The Vectorstore class integrates with Pinecone for vector-based document indexing and retrieval, + * and Cohere for text embedding. It handles AI document management, uploads, and query-based retrieval. + */ +export class Vectorstore { + private pinecone: Pinecone; // Pinecone client for managing the vector index. + private index!: Index; // The specific Pinecone index used for document chunks. + private cohere: CohereClient; // Cohere client for generating embeddings. + private indexName: string = 'pdf-chatbot'; // Default name for the index. + private _id: string; // Unique ID for the Vectorstore instance. + private _doc_ids: string[] = []; // List of document IDs handled by this instance. + + documents: AI_Document[] = []; // Store the documents indexed in the vectorstore. + + /** + * Constructor initializes the Pinecone and Cohere clients, sets up the document ID list, + * and initializes the Pinecone index. + * @param id The unique identifier for the vectorstore instance. + * @param doc_ids A function that returns a list of document IDs. + */ + constructor(id: string, doc_ids: () => string[]) { + const pineconeApiKey = process.env.PINECONE_API_KEY; + if (!pineconeApiKey) { + throw new Error('PINECONE_API_KEY is not defined.'); + } + + // Initialize Pinecone and Cohere clients with API keys from the environment. + this.pinecone = new Pinecone({ apiKey: pineconeApiKey }); + this.cohere = new CohereClient({ token: process.env.COHERE_API_KEY }); + this._id = id; + this._doc_ids = doc_ids(); + this.initializeIndex(); + } + + /** + * Initializes the Pinecone index by checking if it exists, and creating it if not. + * The index is set to use the cosine metric for vector similarity. + */ + private async initializeIndex() { + const indexList: IndexList = await this.pinecone.listIndexes(); + + // Check if the index already exists, otherwise create it. + if (!indexList.indexes?.some(index => index.name === this.indexName)) { + await this.pinecone.createIndex({ + name: this.indexName, + dimension: 1024, + metric: 'cosine', + spec: { + serverless: { + cloud: 'aws', + region: 'us-east-1', + }, + }, + }); + } + + // Set the index for future use. + this.index = this.pinecone.Index(this.indexName); + } + + /** + * Adds an AI document to the vectorstore. This method handles document chunking, uploading to the + * vectorstore, and updating the progress for long-running tasks like file uploads. + * @param doc The document to be added to the vectorstore. + * @param progressCallback Callback to update the progress of the upload. + */ + async addAIDoc(doc: Doc, progressCallback: (progress: number, step: string) => void) { + console.log('Adding AI Document:', doc); + const ai_document_status: string = StrCast(doc.ai_document_status); + + // Skip if the document is already in progress or completed. + if (ai_document_status !== undefined && ai_document_status.trim() !== '' && ai_document_status !== '{}') { + if (ai_document_status === 'IN PROGRESS') { + console.log('Already in progress.'); + return; + } + if (!this._doc_ids.includes(StrCast(doc.ai_doc_id))) { + this._doc_ids.push(StrCast(doc.ai_doc_id)); + } + } else { + // Start processing the document. + doc.ai_document_status = 'PROGRESS'; + console.log(doc); + + // Get the local file path (CSV or PDF). + const local_file_path: string = CsvCast(doc.data)?.url?.pathname ?? PDFCast(doc.data)?.url?.pathname; + console.log('Local File Path:', local_file_path); + + if (local_file_path) { + console.log('Creating AI Document...'); + // Start the document creation process by sending the file to the server. + const { jobId } = await Networking.PostToServer('/createDocument', { file_path: local_file_path }); + + // Poll the server for progress updates. + let inProgress: boolean = true; + let result: any = null; + while (inProgress) { + // Polling interval for status updates. + await new Promise(resolve => setTimeout(resolve, 2000)); + + // Check if the job is completed. + const resultResponse = await Networking.FetchFromServer(`/getResult/${jobId}`); + const resultResponseJson = JSON.parse(resultResponse); + if (resultResponseJson.status === 'completed') { + console.log('Result here:', resultResponseJson); + result = resultResponseJson; + break; + } + + // Fetch progress information and update the progress callback. + const progressResponse = await Networking.FetchFromServer(`/getProgress/${jobId}`); + const progressResponseJson = JSON.parse(progressResponse); + if (progressResponseJson) { + const progress = progressResponseJson.progress; + const step = progressResponseJson.step; + progressCallback(progress, step); + } + } + + // Once completed, process the document and add it to the vectorstore. + console.log('Document JSON:', result); + this.documents.push(result); + await this.indexDocument(result); + console.log(`Document added: ${result.file_name}`); + + // Update document metadata such as summary, purpose, and vectorstore ID. + doc.summary = result.summary; + doc.ai_doc_id = result.doc_id; + this._doc_ids.push(result.doc_id); + doc.ai_purpose = result.purpose; + + if (!doc.vectorstore_id) { + doc.vectorstore_id = JSON.stringify([this._id]); + } else { + doc.vectorstore_id = JSON.stringify(JSON.parse(StrCast(doc.vectorstore_id)).concat([this._id])); + } + + if (!doc.chunk_simpl) { + doc.chunk_simpl = JSON.stringify({ chunks: [] }); + } + + // Process each chunk of the document and update the document's chunk_simpl field. + result.chunks.forEach((chunk: RAGChunk) => { + const chunkToAdd = { + chunkId: chunk.id, + startPage: chunk.metadata.start_page, + endPage: chunk.metadata.end_page, + location: chunk.metadata.location, + chunkType: chunk.metadata.type as CHUNK_TYPE, + text: chunk.metadata.text, + }; + const new_chunk_simpl = JSON.parse(StrCast(doc.chunk_simpl)); + new_chunk_simpl.chunks = new_chunk_simpl.chunks.concat(chunkToAdd); + doc.chunk_simpl = JSON.stringify(new_chunk_simpl); + }); + + // Mark the document status as completed. + doc.ai_document_status = 'COMPLETED'; + } + } + } + + /** + * Indexes the processed document by uploading the document's vector chunks to the Pinecone index. + * @param document The processed document containing its chunks and metadata. + */ + private async indexDocument(document: any) { + console.log('Uploading vectors to content namespace...'); + + // Prepare Pinecone records for each chunk in the document. + const pineconeRecords: PineconeRecord[] = (document.chunks as RAGChunk[]).map(chunk => ({ + id: chunk.id, + values: chunk.values, + metadata: { ...chunk.metadata } as RecordMetadata, + })); + + // Upload the records to Pinecone. + await this.index.upsert(pineconeRecords); + } + + /** + * Retrieves the top K document chunks relevant to the user's query. + * This involves embedding the query using Cohere, then querying Pinecone for matching vectors. + * @param query The search query string. + * @param topK The number of top results to return (default is 10). + * @returns A list of document chunks that match the query. + */ + async retrieve(query: string, topK: number = 10): Promise<RAGChunk[]> { + console.log(`Retrieving chunks for query: ${query}`); + try { + // Generate an embedding for the query using Cohere. + const queryEmbeddingResponse: EmbedResponse = await this.cohere.embed({ + texts: [query], + model: 'embed-english-v3.0', + inputType: 'search_query', + }); + + let queryEmbedding: number[]; + + // Extract the embedding from the response. + if (Array.isArray(queryEmbeddingResponse.embeddings)) { + queryEmbedding = queryEmbeddingResponse.embeddings[0]; + } else if (queryEmbeddingResponse.embeddings && 'embeddings' in queryEmbeddingResponse.embeddings) { + queryEmbedding = (queryEmbeddingResponse.embeddings as { embeddings: number[][] }).embeddings[0]; + } else { + throw new Error('Invalid embedding response format'); + } + + if (!Array.isArray(queryEmbedding)) { + throw new Error('Query embedding is not an array'); + } + + // Query the Pinecone index using the embedding and filter by document IDs. + const queryResponse: QueryResponse = await this.index.query({ + vector: queryEmbedding, + filter: { + doc_id: { $in: this._doc_ids }, + }, + topK, + includeValues: true, + includeMetadata: true, + }); + + // Map the results into RAGChunks and return them. + return queryResponse.matches.map( + match => + ({ + id: match.id, + values: match.values as number[], + metadata: match.metadata as { + text: string; + type: string; + original_document: string; + file_path: string; + doc_id: string; + location: string; + start_page: number; + end_page: number; + }, + }) as RAGChunk + ); + } catch (error) { + console.error(`Error retrieving chunks: ${error}`); + return []; + } + } +} |
