diff options
Diffstat (limited to 'src/server/Recommender.ts')
-rw-r--r-- | src/server/Recommender.ts | 133 |
1 files changed, 0 insertions, 133 deletions
diff --git a/src/server/Recommender.ts b/src/server/Recommender.ts deleted file mode 100644 index 935ec3871..000000000 --- a/src/server/Recommender.ts +++ /dev/null @@ -1,133 +0,0 @@ -// //import { Doc } from "../fields/Doc"; -// //import { StrCast } from "../fields/Types"; -// //import { List } from "../fields/List"; -// //import { CognitiveServices } from "../client/cognitive_services/CognitiveServices"; - -// // var w2v = require('word2vec'); -// var assert = require('assert'); -// var arxivapi = require('arxiv-api-node'); -// import requestPromise = require("request-promise"); -// import * as use from '@tensorflow-models/universal-sentence-encoder'; -// import { Tensor } from "@tensorflow/tfjs-core/dist/tensor"; -// require('@tensorflow/tfjs-node'); - -// //http://gnuwin32.sourceforge.net/packages/make.htm - -// export class Recommender { - -// private _model: any; -// static Instance: Recommender; -// private dimension: number = 0; -// private choice: string = ""; // Tensorflow or Word2Vec - -// constructor() { -// Recommender.Instance = this; -// } - -// /*** -// * Loads pre-trained model from TF -// */ - -// public async loadTFModel() { -// let self = this; -// return new Promise(res => { -// use.load().then(model => { -// self.choice = "TF"; -// self._model = model; -// self.dimension = 512; -// res(model); -// }); -// } - -// ); -// } - -// /*** -// * Loads pre-trained model from word2vec -// */ - -// // private loadModel(): Promise<any> { -// // let self = this; -// // return new Promise(res => { -// // w2v.loadModel("./node_modules/word2vec/examples/fixtures/vectors.txt", function (err: any, model: any) { -// // self.choice = "WV"; -// // self._model = model; -// // self.dimension = model.size; -// // res(model); -// // }); -// // }); -// // } - -// /*** -// * Testing -// */ - -// public async testModel() { -// if (!this._model) { -// await this.loadTFModel(); -// } -// if (this._model) { -// if (this.choice === "WV") { -// let similarity = this._model.similarity('father', 'mother'); -// } -// else if (this.choice === "TF") { -// const model = this._model as use.UniversalSentenceEncoder; -// // Embed an array of sentences. -// const sentences = [ -// 'Hello.', -// 'How are you?' -// ]; -// const embeddings = await this.vectorize(sentences); -// if (embeddings) embeddings.print(true /*verbose*/); -// // model.embed(sentences).then(embeddings => { -// // // `embeddings` is a 2D tensor consisting of the 512-dimensional embeddings for each sentence. -// // // So in this example `embeddings` has the shape [2, 512]. -// // embeddings.print(true /* verbose */); -// // }); -// } -// } -// else { -// console.log("model not found :("); -// } -// } - -// /*** -// * Uses model to convert words to vectors -// */ - -// public async vectorize(text: string[]): Promise<Tensor | undefined> { -// if (!this._model) { -// await this.loadTFModel(); -// } -// if (this._model) { -// if (this.choice === "WV") { -// let word_vecs = this._model.getVectors(text); -// return word_vecs; -// } -// else if (this.choice === "TF") { -// const model = this._model as use.UniversalSentenceEncoder; -// return new Promise<Tensor>(res => { -// model.embed(text).then(embeddings => { -// res(embeddings); -// }); -// }); - -// } -// } -// } - -// // public async trainModel() { -// // w2v.word2vec("./node_modules/word2vec/examples/eng_news-typical_2016_1M-sentences.txt", './node_modules/word2vec/examples/my_phrases.txt', { -// // cbow: 1, -// // size: 200, -// // window: 8, -// // negative: 25, -// // hs: 0, -// // sample: 1e-4, -// // threads: 20, -// // iter: 200, -// // minCount: 2 -// // }); -// // } - -// } |