aboutsummaryrefslogtreecommitdiff
path: root/src/server/Recommender.ts
diff options
context:
space:
mode:
Diffstat (limited to 'src/server/Recommender.ts')
-rw-r--r--src/server/Recommender.ts133
1 files changed, 0 insertions, 133 deletions
diff --git a/src/server/Recommender.ts b/src/server/Recommender.ts
deleted file mode 100644
index 935ec3871..000000000
--- a/src/server/Recommender.ts
+++ /dev/null
@@ -1,133 +0,0 @@
-// //import { Doc } from "../fields/Doc";
-// //import { StrCast } from "../fields/Types";
-// //import { List } from "../fields/List";
-// //import { CognitiveServices } from "../client/cognitive_services/CognitiveServices";
-
-// // var w2v = require('word2vec');
-// var assert = require('assert');
-// var arxivapi = require('arxiv-api-node');
-// import requestPromise = require("request-promise");
-// import * as use from '@tensorflow-models/universal-sentence-encoder';
-// import { Tensor } from "@tensorflow/tfjs-core/dist/tensor";
-// require('@tensorflow/tfjs-node');
-
-// //http://gnuwin32.sourceforge.net/packages/make.htm
-
-// export class Recommender {
-
-// private _model: any;
-// static Instance: Recommender;
-// private dimension: number = 0;
-// private choice: string = ""; // Tensorflow or Word2Vec
-
-// constructor() {
-// Recommender.Instance = this;
-// }
-
-// /***
-// * Loads pre-trained model from TF
-// */
-
-// public async loadTFModel() {
-// let self = this;
-// return new Promise(res => {
-// use.load().then(model => {
-// self.choice = "TF";
-// self._model = model;
-// self.dimension = 512;
-// res(model);
-// });
-// }
-
-// );
-// }
-
-// /***
-// * Loads pre-trained model from word2vec
-// */
-
-// // private loadModel(): Promise<any> {
-// // let self = this;
-// // return new Promise(res => {
-// // w2v.loadModel("./node_modules/word2vec/examples/fixtures/vectors.txt", function (err: any, model: any) {
-// // self.choice = "WV";
-// // self._model = model;
-// // self.dimension = model.size;
-// // res(model);
-// // });
-// // });
-// // }
-
-// /***
-// * Testing
-// */
-
-// public async testModel() {
-// if (!this._model) {
-// await this.loadTFModel();
-// }
-// if (this._model) {
-// if (this.choice === "WV") {
-// let similarity = this._model.similarity('father', 'mother');
-// }
-// else if (this.choice === "TF") {
-// const model = this._model as use.UniversalSentenceEncoder;
-// // Embed an array of sentences.
-// const sentences = [
-// 'Hello.',
-// 'How are you?'
-// ];
-// const embeddings = await this.vectorize(sentences);
-// if (embeddings) embeddings.print(true /*verbose*/);
-// // model.embed(sentences).then(embeddings => {
-// // // `embeddings` is a 2D tensor consisting of the 512-dimensional embeddings for each sentence.
-// // // So in this example `embeddings` has the shape [2, 512].
-// // embeddings.print(true /* verbose */);
-// // });
-// }
-// }
-// else {
-// console.log("model not found :(");
-// }
-// }
-
-// /***
-// * Uses model to convert words to vectors
-// */
-
-// public async vectorize(text: string[]): Promise<Tensor | undefined> {
-// if (!this._model) {
-// await this.loadTFModel();
-// }
-// if (this._model) {
-// if (this.choice === "WV") {
-// let word_vecs = this._model.getVectors(text);
-// return word_vecs;
-// }
-// else if (this.choice === "TF") {
-// const model = this._model as use.UniversalSentenceEncoder;
-// return new Promise<Tensor>(res => {
-// model.embed(text).then(embeddings => {
-// res(embeddings);
-// });
-// });
-
-// }
-// }
-// }
-
-// // public async trainModel() {
-// // w2v.word2vec("./node_modules/word2vec/examples/eng_news-typical_2016_1M-sentences.txt", './node_modules/word2vec/examples/my_phrases.txt', {
-// // cbow: 1,
-// // size: 200,
-// // window: 8,
-// // negative: 25,
-// // hs: 0,
-// // sample: 1e-4,
-// // threads: 20,
-// // iter: 200,
-// // minCount: 2
-// // });
-// // }
-
-// }