1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
import { Doc, FieldResult } from "../fields/Doc";
import { StrCast, Cast } from "../fields/Types";
import { List } from "../fields/List";
import { CognitiveServices, Confidence, Tag, Service } from "./cognitive_services/CognitiveServices";
import React = require("react");
import { observer } from "mobx-react";
import { observable, action, computed, reaction } from "mobx";
// var assert = require('assert');
// var sw = require('stopword');
// var FeedParser = require('feedparser');
// var https = require('https');
import "./ClientRecommender.scss";
import { JSXElement } from "babel-types";
import { RichTextField } from "../fields/RichTextField";
import { ToPlainText } from "../fields/FieldSymbols";
import { listSpec } from "../fields/Schema";
import { ComputedField } from "../fields/ScriptField";
import { ImageField } from "../fields/URLField";
import { KeyphraseQueryView } from "./views/KeyphraseQueryView";
import { Networking } from "./Network";
export interface RecommenderProps {
title: string;
}
/**
* actualDoc: datadoc
* vectorDoc: mean vector of text
* score: similarity score to main doc
*/
export interface RecommenderDocument {
actualDoc: Doc;
vectorDoc: number[];
score: number;
}
const fieldkey = "data";
@observer
export class ClientRecommender extends React.Component<RecommenderProps> {
static Instance: ClientRecommender;
private mainDoc?: RecommenderDocument;
private docVectors: Set<RecommenderDocument> = new Set();
public _queries: string[] = [];
@observable private corr_matrix = [[0, 0], [0, 0]]; // for testing
constructor(props: RecommenderProps) {
super(props);
if (!ClientRecommender.Instance) ClientRecommender.Instance = this;
ClientRecommender.Instance.docVectors = new Set();
//ClientRecommender.Instance.corr_matrix = [[0, 0], [0, 0]];
}
@action
public reset_docs() {
ClientRecommender.Instance.docVectors = new Set();
ClientRecommender.Instance.mainDoc = undefined;
ClientRecommender.Instance.corr_matrix = [[0, 0], [0, 0]];
}
/***
* Computes the cosine similarity between two vectors in Euclidean space.
*/
private distance(vector1: number[], vector2: number[], metric: string = "cosine") {
// assert(vector1.length === vector2.length, "Vectors are not the same length");
let similarity: number;
switch (metric) {
case "cosine":
var dotproduct = 0;
var mA = 0;
var mB = 0;
for (let i = 0; i < vector1.length; i++) { // here you missed the i++
dotproduct += (vector1[i] * vector2[i]);
mA += (vector1[i] * vector1[i]);
mB += (vector2[i] * vector2[i]);
}
mA = Math.sqrt(mA);
mB = Math.sqrt(mB);
similarity = (dotproduct) / ((mA) * (mB)); // here you needed extra brackets
return similarity;
case "euclidian":
var sum = 0;
for (let i = 0; i < vector1.length; i++) {
sum += Math.pow(vector1[i] - vector2[i], 2);
}
similarity = Math.sqrt(sum);
return similarity;
default:
return 0;
}
}
/**
* Returns list of {doc, similarity (to main doc)} in increasing score
*/
public computeSimilarities(distance_metric: string) {
const parameters: any = {};
Networking.PostToServer("/IBMAnalysis", parameters).then(response => {
console.log("ANALYSIS RESULTS! ", response);
});
ClientRecommender.Instance.docVectors.forEach((doc: RecommenderDocument) => {
if (ClientRecommender.Instance.mainDoc) {
const distance = ClientRecommender.Instance.distance(ClientRecommender.Instance.mainDoc.vectorDoc, doc.vectorDoc, distance_metric);
doc.score = distance;
}
}
);
const doclist = Array.from(ClientRecommender.Instance.docVectors);
if (distance_metric === "euclidian") {
doclist.sort((a: RecommenderDocument, b: RecommenderDocument) => a.score - b.score);
}
else {
doclist.sort((a: RecommenderDocument, b: RecommenderDocument) => b.score - a.score);
}
return doclist;
}
/***
* Computes the mean of a set of vectors
*/
public mean(paragraph: Set<number[]>) {
const n = 512;
const num_words = paragraph.size;
let meanVector = new Array<number>(n).fill(0); // mean vector
if (num_words > 0) { // check to see if paragraph actually was vectorized
paragraph.forEach((wordvec: number[]) => {
for (let i = 0; i < n; i++) {
meanVector[i] += wordvec[i];
}
});
meanVector = meanVector.map(x => x / num_words);
}
return meanVector;
}
/***
* Processes sentence vector as Recommender Document, adds to Doc Set.
*/
public processVector(vector: number[], dataDoc: Doc, isMainDoc: boolean) {
if (vector.length > 0) {
const internalDoc: RecommenderDocument = { actualDoc: dataDoc, vectorDoc: vector, score: 0 };
ClientRecommender.Instance.addToDocSet(internalDoc, isMainDoc);
}
}
/***
* Adds to Doc set. Updates mainDoc (one clicked) if necessary.
*/
private addToDocSet(internalDoc: RecommenderDocument, isMainDoc: boolean) {
if (ClientRecommender.Instance.docVectors) {
if (isMainDoc) ClientRecommender.Instance.mainDoc = internalDoc;
ClientRecommender.Instance.docVectors.add(internalDoc);
}
}
/***
* Generates tags for an image using Cognitive Services
*/
generateMetadata = async (dataDoc: Doc, extDoc: Doc, threshold: Confidence = Confidence.Excellent) => {
const converter = (results: any) => {
const tagDoc = new Doc;
const tagsList = new List();
results.tags.map((tag: Tag) => {
tagsList.push(tag.name);
const sanitized = tag.name.replace(" ", "_");
tagDoc[sanitized] = ComputedField.MakeFunction(`(${tag.confidence} >= this.confidence) ? ${tag.confidence} : "${ComputedField.undefined}"`);
});
extDoc.generatedTags = tagsList;
tagDoc.title = "Generated Tags Doc";
tagDoc.confidence = threshold;
return tagDoc;
};
const url = this.url(dataDoc);
if (url) {
return CognitiveServices.Image.Appliers.ProcessImage(extDoc, ["generatedTagsDoc"], url, Service.ComputerVision, converter);
}
}
/***
* Gets URL of image
*/
private url(dataDoc: Doc) {
const data = Cast(Doc.GetProto(dataDoc)[fieldkey], ImageField);
return data ? data.url.href : undefined;
}
/***
* Uses Cognitive Services to extract keywords from a document
*/
public async extractText(dataDoc: Doc, extDoc: Doc, internal: boolean = true, api: string = "bing", isMainDoc: boolean = false, image: boolean = false) {
// STEP 1. Consolidate data of document. Depends on type of document.
let data: string = "";
let taglist: FieldResult<List<string>> = undefined;
if (image) {
if (!extDoc.generatedTags) await this.generateMetadata(dataDoc, extDoc); // TODO: Automatically generate tags. Need to ask Sam about this.
if (extDoc.generatedTags) {
taglist = Cast(extDoc.generatedTags, listSpec("string"));
taglist!.forEach(tag => {
data += tag + ", ";
});
}
}
else {
const fielddata = Cast(dataDoc.data, RichTextField, null);
data = fielddata?.Text || "";
}
// STEP 2. Upon receiving response from Text Cognitive Services, do additional processing on keywords.
// Currently we are still using Cognitive Services for internal recommendations, but in the future this might not be necessary.
const converter = async (results: any, data: string, isImage: boolean = false) => {
let keyterms = new List<string>(); // raw keywords
let kp_string: string = ""; // keywords*frequency concatenated into a string. input into TF
let highKP: string[] = [""]; // most frequent keyphrase
let high = 0;
if (isImage) { // no keyphrase processing necessary
kp_string = data;
if (taglist) {
keyterms = taglist;
highKP = [taglist[0]];
}
}
else { // text processing
results.documents.forEach((doc: any) => {
const keyPhrases = doc.keyPhrases; // returned by Cognitive Services
keyPhrases.map((kp: string) => {
keyterms.push(kp);
const frequency = this.countFrequencies(kp, data); // frequency of keyphrase in paragraph
kp_string += kp + ", "; // ensures that if frequency is 0 for some reason kp is still added
for (let i = 0; i < frequency - 1; i++) {
kp_string += kp + ", "; // weights repeated keywords higher
}
// replaces highKP with new one
if (frequency > high) {
high = frequency;
highKP = [kp];
}
// appends to current highKP phrase
else if (frequency === high) {
highKP.push(kp);
}
});
});
}
if (kp_string.length > 2) kp_string = kp_string.substring(0, kp_string.length - 2); // strips extra comma and space if there are a lot of keywords
console.log("kp_string: ", kp_string);
let ext_recs = "";
// Pushing keyword extraction to IBM for external recommendations. Should shift to internal eventually.
if (!internal) {
const parameters: any = {
'language': 'en',
'text': data,
'features': {
'keywords': {
'sentiment': true,
'emotion': true,
'limit': 3
}
}
};
await Networking.PostToServer("/IBMAnalysis", parameters).then(response => {
const sorted_keywords = response.result.keywords;
if (sorted_keywords.length > 0) {
console.log("IBM keyphrase", sorted_keywords[0]);
highKP = [];
for (let i = 0; i < 5; i++) {
if (sorted_keywords[i]) {
highKP.push(sorted_keywords[i].text);
}
}
keyterms = new List<string>(highKP);
}
});
//let kpqv = new KeyphraseQueryView({ keyphrases: ["hello"] });
ext_recs = await this.sendRequest([highKP[0]], api);
}
// keyterms: list for extDoc, kp_string: input to TF, ext_recs: {titles, urls} of retrieved results from highKP query
return { keyterms: keyterms, external_recommendations: ext_recs, kp_string: [kp_string] };
};
// STEP 3: Start recommendation pipeline. Branches off into internal and external in Cognitive Services
if (data !== "") {
return CognitiveServices.Text.Appliers.analyzer(dataDoc, extDoc, ["key words"], data, converter, isMainDoc, internal);
}
return;
}
/**
*
* Counts frequencies of keyphrase in paragraph.
*/
private countFrequencies(keyphrase: string, paragraph: string) {
const data = paragraph.split(/ |\n/); // splits by new lines and spaces
const kp_array = keyphrase.split(" ");
const num_keywords = kp_array.length;
const par_length = data.length;
let frequency = 0;
// slides keyphrase windows across paragraph and checks if it matches with corresponding paragraph slice
for (let i = 0; i <= par_length - num_keywords; i++) {
const window = data.slice(i, i + num_keywords);
if (JSON.stringify(window).toLowerCase() === JSON.stringify(kp_array).toLowerCase() || kp_array.every(val => window.includes(val))) {
frequency++;
}
}
return frequency;
}
/**
*
* API for sending arXiv request.
*/
private async sendRequest(keywords: string[], api: string) {
let query = "";
keywords.forEach((kp: string) => query += " " + kp);
if (api === "arxiv") {
return new Promise<any>(resolve => {
this.arxivrequest(query).then(resolve);
});
}
else if (api === "bing") {
return new Promise<any>(resolve => {
this.bingWebSearch(query).then(resolve);
});
}
else {
console.log("no api specified :(");
}
}
/**
* Request to Bing API. Most of code is in Cognitive Services.
*/
bingWebSearch = async (query: string) => {
const converter = async (results: any) => {
const title_vals: string[] = [];
const url_vals: string[] = [];
results.webPages.value.forEach((doc: any) => {
title_vals.push(doc.name);
url_vals.push(doc.url);
});
return { title_vals, url_vals };
};
return CognitiveServices.BingSearch.Appliers.analyzer(query, converter);
}
/**
* Actual request to the arXiv server for ML articles.
*/
arxivrequest = async (query: string) => {
const xhttp = new XMLHttpRequest();
const serveraddress = "http://export.arxiv.org/api";
const maxresults = 5;
const endpoint = serveraddress + "/query?search_query=all:" + query + "&start=0&max_results=" + maxresults.toString();
const promisified = (resolve: any, reject: any) => {
xhttp.onreadystatechange = function () {
if (this.readyState === 4) {
const result = xhttp.response;
const xml = xhttp.responseXML;
console.log("arXiv Result: ", xml);
switch (this.status) {
case 200:
const title_vals: string[] = [];
const url_vals: string[] = [];
if (xml) {
const titles = xml.getElementsByTagName("title");
let counter = 1;
if (titles && titles.length > 1) {
while (counter <= maxresults) {
const title = titles[counter].childNodes[0].nodeValue!;
title_vals.push(title);
counter++;
}
}
const ids = xml.getElementsByTagName("id");
counter = 1;
if (ids && ids.length > 1) {
while (counter <= maxresults) {
const url = ids[counter].childNodes[0].nodeValue!;
url_vals.push(url);
counter++;
}
}
}
return resolve({ title_vals, url_vals });
case 400:
default:
return reject(result);
}
}
};
xhttp.open("GET", endpoint, true);
xhttp.send();
};
return new Promise<any>(promisified);
}
render() {
return (<div className="wrapper">
</div>);
}
}
|