1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
import { ChatCompletionMessageParam } from 'openai/resources';
import { openai } from './setup';
import { ClientOptions, OpenAI } from 'openai';
export enum CustomizationType {
PRES_TRAIL_SLIDE = 'trails',
}
export interface GeneratedResponse {
collectionBackgroundColor: string;
documentsWithColors: DocumentWithColor[];
}
export interface DocumentWithColor {
id: number;
color: string;
}
export interface StyleInputDocument {
id: number;
textContent: string;
textSize: number;
}
export interface StyleInput {
collectionDescription: string;
documents: StyleInputDocument[];
imageColors: string[];
}
interface PromptInfo {
description: string;
features: { name: string; description: string; values?: string[] }[];
}
const prompts: { [key: string]: PromptInfo } = {
trails: {
description:
'We are adding customization to a slide in a presentation. Given a natural language input, translate it into a json with the required fields: [title, presentation_transition, presentation_effect, config_zoom, presentation_effectDirection].',
features: [],
},
};
export const addCustomizationProperty = (type: CustomizationType, name: string, description: string, values?: string[]) => {
values ? prompts[type].features.push({ name, description, values }) : prompts[type].features.push({ name, description });
};
const setupPresSlideCustomization = () => {
addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'title', 'is the title/name of the slide.');
addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'presentation_transition', 'is a number in milliseconds for how long it should take to transition/move to a slide.');
addCustomizationProperty(CustomizationType.PRES_TRAIL_SLIDE, 'presentation_effect', 'is an effect applied to the slide when we transition to it.', ['None', 'Fade in', 'Flip', 'Rotate', 'Bounce', 'Roll']);
};
setupPresSlideCustomization();
export const gptTrailSlideCustomization = async (inputText: string) => {
let prompt = prompts.trails.description;
prompts.trails.features.forEach(feature => {
prompt += feature.name + feature.description;
if (feature.values) {
prompt += `Its only possible values are [${feature.values.join(', ')}].`;
}
});
// prompt +=
// 'title is the title/name of the slide. presentation_transition is a number in milliseconds for how long it should take to transition/move to a slide. presentation_effect is an effect applied to the slide when we transition to it. Its only possible values are: [None, Fade in, Flip, Rotate, Bounce, Roll]. presentation_effectDirection is what direction the effect is applied. Its only possible values are: [Enter from left, Enter from right, Enter from bottom, Enter from Top, Enter from center]. config_zoom is a number from 0 to 1.0 indicating the percentage we should zoom into the slide.';
prompt += 'If the input does not contain info a specific key, please set their value to null. Please only return the json with these keys and their values.';
try {
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo',
messages: [
{ role: 'system', content: prompt },
{ role: 'user', content: inputText },
],
temperature: 0.1,
max_tokens: 1000,
});
return response.choices[0].message?.content;
} catch (err) {
console.log(err);
return 'Error connecting with API.';
}
};
// layout
export const smartLayout = async (inputData: { width: number; height: number }[]) => {
let prompt =
'I want to layout documents in a 2d space in a nice, grid-like fashion with nice padding of about 50 units around each document, making sure they do not overlap. Given a json array of documents containing their width and heights in this form: {width: number, height: number}[], give me a json array in this form: {x: number, y: number}[] corresponding to the documents with a nice layout. Return just the json array.';
let messages: ChatCompletionMessageParam[] = [
{ role: 'system', content: prompt },
{ role: 'user', content: JSON.stringify(inputData) },
];
console.log('Prompt: ', prompt);
console.log('Messages: ', messages);
try {
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: messages,
temperature: 0.01,
max_tokens: 2000,
});
const content = response.choices[0].message?.content;
if (content) {
return content;
}
return 'Malformed response.';
} catch (err) {
console.log(err);
return 'Error connecting with API.';
}
};
// layout
export const smartLayout2 = async (inputData: { width: number; height: number; content: string }[]) => {
let prompt =
'I want to layout documents in a 2d space in an organized fashion with padding of about 50 units around each document, importantly making sure they do not overlap. I also want you to group documents by their content, with space separating semantic categories. Given a json array of documents containing their width and heights in this form: {width: number, height: number, content: string}[], give me a json array in this form: {x: number, y: number}[] corresponding to the documents in the same order with a nice layout. Return just the json array.';
let messages: ChatCompletionMessageParam[] = [
{ role: 'system', content: prompt },
{ role: 'user', content: JSON.stringify(inputData) },
];
console.log('Prompt: ', prompt);
console.log('Messages: ', messages);
try {
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: messages,
temperature: 0.01,
max_tokens: 2000,
});
const content = response.choices[0].message?.content;
if (content) {
return content;
}
return 'Malformed response.';
} catch (err) {
console.log(err);
return 'Error connecting with API.';
}
};
// palette / styling
export const generatePalette = async (inputData: StyleInput, useImageData: boolean, inputText: string, lastResponse?: GeneratedResponse[]) => {
let prompt = 'Dash is a hypermedia web application that allows users to organize documents of different media types into collections. The user wants you to come up with cohesive color palettes for a collection.';
prompt +=
' The user is going to give you a json object of this format:' +
JSON.stringify({ collectionDescription: 'string', documents: 'Document[]', imageColors: 'string[]' }) +
'. The user may follow by giving more specific instructions on what kind of palettes they want. collectionDescription is the title of the collection, which you should create color palettes based on. This is the document format:' +
JSON.stringify({
id: 'number',
textSize: 'number',
textContent: 'string',
}) +
(useImageData ? '. Finally, imageColors are the main hex colors of the images in the collection.' : '. Ignore imageColors.') +
'You are going to generate three distinct variants of color palettes for the user to choose from based mostly on collectionDescription, and loosely on the text content and text size of the documents.' +
(useImageData ? 'You should slightly take imageColors into account, but primarly focus on crafting a palette that matches the text content.' : '') +
'The variants should start with a light palette and grow increasingly more intense and vibrant. Return a json array of three objects in this format:' +
JSON.stringify({
collectionBackgroundColor: 'string',
documentsWithColors: 'DocumentWithColor[]',
}) +
'. collectionBackgroundColor, should be a string hex value for the background color of the collection. documentsWithColors has the same length and order of the input documents. DocumentWithColor has this format:' +
JSON.stringify({
id: 'number',
color: 'string',
}) +
", and each element’s color is based on the theme of the overall color palette and also by its document’s textContent. Please pay attention to aesthetics of how each document's color complement the background and each other and choose a variety of colors when appropriate.";
// enforce format
prompt += 'Important: Respond with only the JSON array and no other text.';
// iteration
let messages: ChatCompletionMessageParam[] = [
{ role: 'system', content: prompt },
{ role: 'user', content: JSON.stringify(inputData) },
];
// continuing conversation
if (lastResponse && inputText !== '') {
messages.push({ role: 'assistant', content: JSON.stringify(lastResponse) });
messages.push({ role: 'user', content: 'Please modify the previously generated palettes with the following: ' + inputText });
} else if (inputText !== '') {
messages.push({ role: 'user', content: inputText });
}
console.log('Prompt: ', prompt);
console.log('Messages: ', messages);
try {
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: messages,
temperature: 0.1,
max_tokens: 2000,
});
const content = response.choices[0].message?.content;
console.log(content);
if (content) {
return content;
}
return 'Malformed response.';
} catch (err) {
console.log(err);
return 'Error connecting with API.';
}
};
|