1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
import { MathUtil, PIXIRectangle, PIXIPoint } from "./MathUtil";
export class GeometryUtil {
public static ComputeBoundingBox(points: { x: number, y: number }[], scale = 1, padding: number = 0): PIXIRectangle {
let minX: number = Number.MAX_VALUE;
let minY: number = Number.MAX_VALUE;
let maxX: number = Number.MIN_VALUE;
let maxY: number = Number.MIN_VALUE;
for (var i = 0; i < points.length; i++) {
if (points[i].x < minX)
minX = points[i].x;
if (points[i].y < minY)
minY = points[i].y;
if (points[i].x > maxX)
maxX = points[i].x;
if (points[i].y > maxY)
maxY = points[i].y;
}
return new PIXIRectangle(minX * scale - padding, minY * scale - padding, (maxX - minX) * scale + padding * 2, (maxY - minY) * scale + padding * 2);
}
public static RectangleOverlap(rect1: PIXIRectangle, rect2: PIXIRectangle) {
let x_overlap = Math.max(0, Math.min(rect1.right, rect2.right) - Math.max(rect1.left, rect2.left));
let y_overlap = Math.max(0, Math.min(rect1.bottom, rect2.bottom) - Math.max(rect1.top, rect2.top));
return x_overlap * y_overlap;
}
public static RotatePoints(center: { x: number, y: number }, points: { x: number, y: number }[], angle: number): PIXIPoint[] {
const rotate = (cx: number, cy: number, x: number, y: number, angle: number) => {
const radians = angle,
cos = Math.cos(radians),
sin = Math.sin(radians),
nx = (cos * (x - cx)) + (sin * (y - cy)) + cx,
ny = (cos * (y - cy)) - (sin * (x - cx)) + cy;
return new PIXIPoint(nx, ny);
}
return points.map(p => rotate(center.x, center.y, p.x, p.y, angle));
}
public static LineByLeastSquares(points: { x: number, y: number }[]): PIXIPoint[] {
let sum_x: number = 0;
let sum_y: number = 0;
let sum_xy: number = 0;
let sum_xx: number = 0;
let count: number = 0;
let x: number = 0;
let y: number = 0;
if (points.length === 0) {
return [];
}
for (let v = 0; v < points.length; v++) {
x = points[v].x;
y = points[v].y;
sum_x += x;
sum_y += y;
sum_xx += x * x;
sum_xy += x * y;
count++;
}
let m = (count * sum_xy - sum_x * sum_y) / (count * sum_xx - sum_x * sum_x);
let b = (sum_y / count) - (m * sum_x) / count;
let result: PIXIPoint[] = new Array<PIXIPoint>();
for (let v = 0; v < points.length; v++) {
x = points[v].x;
y = x * m + b;
result.push(new PIXIPoint(x, y));
}
return result;
}
// public static PointInsidePolygon(vs:Point[], x:number, y:number):boolean {
// // ray-casting algorithm based on
// // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
// var inside = false;
// for (var i = 0, j = vs.length - 1; i < vs.length; j = i++) {
// var xi = vs[i].x, yi = vs[i].y;
// var xj = vs[j].x, yj = vs[j].y;
// var intersect = ((yi > y) != (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
// if (intersect)
// inside = !inside;
// }
// return inside;
// };
public static IntersectLines(x1: number, y1: number, x2: number, y2: number, x3: number, y3: number, x4: number, y4: number): boolean {
let a1: number, a2: number, b1: number, b2: number, c1: number, c2: number;
let r1: number, r2: number, r3: number, r4: number;
let denom: number, offset: number, num: number;
a1 = y2 - y1;
b1 = x1 - x2;
c1 = (x2 * y1) - (x1 * y2);
r3 = ((a1 * x3) + (b1 * y3) + c1);
r4 = ((a1 * x4) + (b1 * y4) + c1);
if ((r3 !== 0) && (r4 !== 0) && (MathUtil.Sign(r3) === MathUtil.Sign(r4))) {
return false;
}
a2 = y4 - y3;
b2 = x3 - x4;
c2 = (x4 * y3) - (x3 * y4);
r1 = (a2 * x1) + (b2 * y1) + c2;
r2 = (a2 * x2) + (b2 * y2) + c2;
if ((r1 !== 0) && (r2 !== 0) && (MathUtil.Sign(r1) === MathUtil.Sign(r2))) {
return false;
}
denom = (a1 * b2) - (a2 * b1);
if (denom === 0) {
return false;
}
return true;
}
}
|