diff options
author | Logan Bauman <logan_bauman@brown.edu> | 2022-05-07 08:12:20 -0400 |
---|---|---|
committer | Logan Bauman <logan_bauman@brown.edu> | 2022-05-07 08:12:20 -0400 |
commit | 10f2ece4ab4d8df526c5ff77958b25fe6f32344d (patch) | |
tree | 8ce1826fa3b64549dc04e0c3cfd2053aa9eb6dc6 | |
parent | 718f2a66accddc9e1ff619c478e3cdce1b39333a (diff) |
hi
-rw-r--r-- | __pycache__/hyperparameters.cpython-38.pyc | bin | 315 -> 341 bytes | |||
-rw-r--r-- | __pycache__/losses.cpython-38.pyc | bin | 4529 -> 4610 bytes | |||
-rw-r--r-- | hyperparameters.py | 6 | ||||
-rw-r--r-- | losses.py | 6 | ||||
-rw-r--r-- | save.jpg | bin | 22251 -> 25059 bytes |
5 files changed, 7 insertions, 5 deletions
diff --git a/__pycache__/hyperparameters.cpython-38.pyc b/__pycache__/hyperparameters.cpython-38.pyc Binary files differindex 99d18197..40cba873 100644 --- a/__pycache__/hyperparameters.cpython-38.pyc +++ b/__pycache__/hyperparameters.cpython-38.pyc diff --git a/__pycache__/losses.cpython-38.pyc b/__pycache__/losses.cpython-38.pyc Binary files differindex a642b379..ff01b5a7 100644 --- a/__pycache__/losses.cpython-38.pyc +++ b/__pycache__/losses.cpython-38.pyc diff --git a/hyperparameters.py b/hyperparameters.py index 73f4b497..fedd4dd7 100644 --- a/hyperparameters.py +++ b/hyperparameters.py @@ -9,7 +9,7 @@ Number of epochs. If you experiment with more complex networks you might need to increase this. Likewise if you add regularization that slows training. """ -num_epochs = 5000 +num_epochs = 150 """ A critical parameter that can dramatically affect whether training @@ -20,6 +20,6 @@ learning_rate = 1e-2 momentum = 0.01 -alpha = 1e-2 +alpha = 1e1 -beta = 1e-4 +beta = 1e2 @@ -34,7 +34,7 @@ class YourModel(tf.keras.Model): #print(self.content_image.shape, self.style_image.shape) - self.optimizer = tf.keras.optimizers.Adam() + self.optimizer = tf.keras.optimizers.Adam(1e-2) self.vgg16 = [ # Block 1 @@ -112,6 +112,8 @@ class YourModel(tf.keras.Model): content_l = self.content_loss(self.photo_layers, input_layers) style_l = self.style_loss(self.art_layers, input_layers) # Equation 7 + print('style_loss', style_l) + print('content_loss', content_l) return (self.alpha * content_l) + (self.beta * style_l) def content_loss(self, photo_layers, input_layers): @@ -164,7 +166,7 @@ class YourModel(tf.keras.Model): for i in range(len(art_layers)): art_layer = art_layers[i] input_layer = input_layers[i] - L_style = tf.math.add(L_style, self.layer_loss(art_layer, input_layer)) + L_style = tf.math.add(L_style, self.layer_loss(art_layer, input_layer)*(1/5)) #print('style loss', L_style) return L_style |