aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDavid Doan <daviddoan@davids-mbp-3.devices.brown.edu>2022-05-07 17:41:40 -0400
committerDavid Doan <daviddoan@davids-mbp-3.devices.brown.edu>2022-05-07 17:41:40 -0400
commit423c72c1eb93ea7fc6aaeba29e1c9f5e376b9fe6 (patch)
treef3994f63e3c2a476ed3cd31bbec168d2a6520557
parent228d83a47b6c6eb1d0c01b85761a8f6e1db48c1d (diff)
testing
-rw-r--r--__pycache__/losses.cpython-38.pycbin4664 -> 4620 bytes
-rw-r--r--losses.py8
-rw-r--r--main.py4
3 files changed, 6 insertions, 6 deletions
diff --git a/__pycache__/losses.cpython-38.pyc b/__pycache__/losses.cpython-38.pyc
index d25c70d0..1f2c9bf4 100644
--- a/__pycache__/losses.cpython-38.pyc
+++ b/__pycache__/losses.cpython-38.pyc
Binary files differ
diff --git a/losses.py b/losses.py
index 51f387a4..99b1eded 100644
--- a/losses.py
+++ b/losses.py
@@ -11,16 +11,16 @@ class YourModel(tf.keras.Model):
def __init__(self, content_image, style_image): #normalize these images to float values
super(YourModel, self).__init__()
- self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True, preserve_range=True).astype('uint8')
+ self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True)
self.content_image = tf.expand_dims(self.content_image, axis=0)
print(self.content_image)
#perhaps consider cropping to avoid distortion
- self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True, preserve_range=True).astype('uint8')
+ self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True)
self.style_image = tf.expand_dims(self.style_image, axis=0)
#self.x = tf.Variable(initial_value = self.content_image.numpy().astype(np.float32), trainable=True)
self.x = tf.Variable(initial_value = np.random.rand(self.content_image.shape[0],
- self.content_image.shape[1], self.content_image.shape[2], self.content_image.shape[3]).astype('uint8'), trainable=True)
+ self.content_image.shape[1], self.content_image.shape[2], self.content_image.shape[3]).astype(np.float32), trainable=True)
self.alpha = hp.alpha
self.beta = hp.beta
@@ -117,7 +117,7 @@ class YourModel(tf.keras.Model):
return (self.alpha * content_l) + (self.beta * style_l)
def content_loss(self, photo_layers, input_layers):
- L_content = tf.constant(0.0).astype('uint8')
+ L_content = tf.constant(0.0)
for i in range(len(photo_layers)):
pl = photo_layers[i]
il = input_layers[i]
diff --git a/main.py b/main.py
index 2d8c216a..605ddee7 100644
--- a/main.py
+++ b/main.py
@@ -54,7 +54,7 @@ def main():
content_image = imread(ARGS.content)
style_image = imread(ARGS.style)
- style_image = transform.resize(style_image, content_image.shape).astype('uint8')
+ style_image = transform.resize(style_image, content_image.shape)
my_model = YourModel(content_image=content_image, style_image=style_image)
my_model.vgg16.build([1, 255, 255, 3])
my_model.vgg16.load_weights('vgg16_imagenet.h5', by_name=True)
@@ -62,7 +62,7 @@ def main():
final_image = tf.squeeze(my_model.x)
- plt.imshow(final_image)
+ plt.imshow(final_image).astype('uint8')
imsave(ARGS.savefile, final_image)