aboutsummaryrefslogtreecommitdiff
path: root/hyperparameters.py
diff options
context:
space:
mode:
authorLogan Bauman <logan_bauman@brown.edu>2022-05-07 14:16:42 -0400
committerLogan Bauman <logan_bauman@brown.edu>2022-05-07 14:16:42 -0400
commit1b54bfa9de44f29ca2046d1eeb0ab174ae0dadbd (patch)
tree5b9738733d10bd36e00e6d5f7a6463174f52059b /hyperparameters.py
parent95be7aba1fa85881253a0a09752204863f31bcb8 (diff)
hi
Diffstat (limited to 'hyperparameters.py')
-rw-r--r--hyperparameters.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/hyperparameters.py b/hyperparameters.py
index 80141fcf..6c82a745 100644
--- a/hyperparameters.py
+++ b/hyperparameters.py
@@ -9,14 +9,14 @@ Number of epochs. If you experiment with more complex networks you
might need to increase this. Likewise if you add regularization that
slows training.
"""
-num_epochs = 20000
+num_epochs = 7000
"""
A critical parameter that can dramatically affect whether training
succeeds or fails. The value for this depends significantly on which
optimizer is used. Refer to the default learning rate parameter
"""
-learning_rate = 1e-2
+learning_rate = 2e-3
momentum = 0.01