aboutsummaryrefslogtreecommitdiff
path: root/hyperparameters.py
diff options
context:
space:
mode:
authorDavid Doan <daviddoan@davids-mbp-3.devices.brown.edu>2022-05-07 17:37:47 -0400
committerDavid Doan <daviddoan@davids-mbp-3.devices.brown.edu>2022-05-07 17:37:47 -0400
commit228d83a47b6c6eb1d0c01b85761a8f6e1db48c1d (patch)
tree5b1ae18c8b5e1ae1392c7760e2e741f8eb6e778e /hyperparameters.py
parent46a7929942f90d960a0a4d6e35251c900bd45fb2 (diff)
parent00991837cc0bbb62b98ab3024ea795a18cf2dde8 (diff)
testing
Diffstat (limited to 'hyperparameters.py')
-rw-r--r--hyperparameters.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/hyperparameters.py b/hyperparameters.py
index 63e51b91..75528742 100644
--- a/hyperparameters.py
+++ b/hyperparameters.py
@@ -9,17 +9,17 @@ Number of epochs. If you experiment with more complex networks you
might need to increase this. Likewise if you add regularization that
slows training.
"""
-num_epochs = 100
+num_epochs = 500
"""
A critical parameter that can dramatically affect whether training
succeeds or fails. The value for this depends significantly on which
optimizer is used. Refer to the default learning rate parameter
"""
-learning_rate = 3e-2
+learning_rate = 1e2
momentum = 0.01
-alpha = 1e-5
+alpha = 1
-beta = 1e-2
+beta = 100