aboutsummaryrefslogtreecommitdiff
path: root/hyperparameters.py
diff options
context:
space:
mode:
authorLogan Bauman <logan_bauman@brown.edu>2022-05-06 23:32:17 -0400
committerLogan Bauman <logan_bauman@brown.edu>2022-05-06 23:32:17 -0400
commitd802c988a57d6afe4fca979384ba377ecc7edb66 (patch)
treebf604e5da1bee0f2bf1ef16cc67df9a61dede2fa /hyperparameters.py
parent6e5f2d1a62f4f3bf0e87829082b2120ca440ddf0 (diff)
hi
Diffstat (limited to 'hyperparameters.py')
-rw-r--r--hyperparameters.py6
1 files changed, 3 insertions, 3 deletions
diff --git a/hyperparameters.py b/hyperparameters.py
index b03db017..460543dc 100644
--- a/hyperparameters.py
+++ b/hyperparameters.py
@@ -9,17 +9,17 @@ Number of epochs. If you experiment with more complex networks you
might need to increase this. Likewise if you add regularization that
slows training.
"""
-num_epochs = 5000
+num_epochs = 1000
"""
A critical parameter that can dramatically affect whether training
succeeds or fails. The value for this depends significantly on which
optimizer is used. Refer to the default learning rate parameter
"""
-learning_rate = 3e-2
+learning_rate = 1e-2
momentum = 0.01
alpha = 1e-2
-beta = 1e-5
+beta = 1e-4