diff options
author | Logan Bauman <logan_bauman@brown.edu> | 2022-05-06 23:32:17 -0400 |
---|---|---|
committer | Logan Bauman <logan_bauman@brown.edu> | 2022-05-06 23:32:17 -0400 |
commit | d802c988a57d6afe4fca979384ba377ecc7edb66 (patch) | |
tree | bf604e5da1bee0f2bf1ef16cc67df9a61dede2fa /losses.py | |
parent | 6e5f2d1a62f4f3bf0e87829082b2120ca440ddf0 (diff) |
hi
Diffstat (limited to 'losses.py')
-rw-r--r-- | losses.py | 37 |
1 files changed, 27 insertions, 10 deletions
@@ -1,8 +1,10 @@ import tensorflow as tf +import numpy as np from tensorflow.keras.layers import \ Conv2D, AveragePooling2D from skimage import transform import hyperparameters as hp + class YourModel(tf.keras.Model): """ Your own neural network model. """ @@ -11,17 +13,26 @@ class YourModel(tf.keras.Model): self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True) self.content_image = tf.expand_dims(self.content_image, axis=0) + print(self.content_image) #perhaps consider cropping to avoid distortion self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True) self.style_image = tf.expand_dims(self.style_image, axis=0) - self.x = tf.Variable(tf.expand_dims(tf.random.uniform(tf.shape(content_image)), axis=0), trainable=True) + #self.x = tf.Variable(initial_value = self.content_image.numpy().astype(np.float32), trainable=True) + self.x = tf.Variable(initial_value = np.random.rand(self.content_image.shape[0], + self.content_image.shape[1], self.content_image.shape[2], self.content_image.shape[3]).astype(np.float32), trainable=True) + self.alpha = hp.alpha self.beta = hp.beta - print(self.x.shape) + self.photo_layers = None + self.art_layers = None + - print(self.content_image.shape, self.style_image.shape) + + #(self.x.shape) + + #print(self.content_image.shape, self.style_image.shape) self.optimizer = tf.keras.optimizers.Adam() @@ -88,14 +99,20 @@ class YourModel(tf.keras.Model): return x, layers def loss_fn(self, p, a, x): - _, photo_layers = self.call(p) - _, art_layers = self.call(a) - _, input_layers = self.call(x) - - content_l = self.content_loss(photo_layers, input_layers) - style_l = self.style_loss(art_layers, input_layers) + # print(p) + if(self.photo_layers == None): + _, self.photo_layers = self.call(p) + # print(a) + if(self.art_layers == None): + _, self.art_layers = self.call(a) + # print(x) + _, input_layers = self.call(x) + + + content_l = self.content_loss(self.photo_layers, input_layers) + style_l = self.style_loss(self.art_layers, input_layers) # Equation 7 - return (self.alpha * content_l) + (self.beta * style_l) + return (self.alpha * content_l) + (self.beta * style_l) def content_loss(self, photo_layers, input_layers): L_content = tf.constant(0.0) |