diff options
author | David Doan <daviddoan@davids-mbp-3.devices.brown.edu> | 2022-05-04 18:22:04 -0400 |
---|---|---|
committer | David Doan <daviddoan@davids-mbp-3.devices.brown.edu> | 2022-05-04 18:22:04 -0400 |
commit | e9443420d1297bf9a0f5d6023e4d1117152877de (patch) | |
tree | 44e8b061980f4c5c8181166105a485c168a86d65 /losses.py | |
parent | 53cef1b18f12287f187776aecf1c8f5ba7c04b87 (diff) |
tried testing (unsuccessfully)
Diffstat (limited to 'losses.py')
-rw-r--r-- | losses.py | 10 |
1 files changed, 7 insertions, 3 deletions
@@ -65,8 +65,8 @@ class YourModel(tf.keras.Model): activation="relu", name="block5_conv3"), AveragePooling2D(2, name="block5_pool"), ] - # for layer in self.vgg16: - # layer.trainable = False + for layer in self.vgg16: + layer.trainable = False self.indexed_layers = [layer for layer in self.vgg16 if "conv1" in layer.name] self.desired = [layer.name for layer in self.vgg16 if "conv1" in layer.name] @@ -98,7 +98,8 @@ class YourModel(tf.keras.Model): return (self.alpha * content_l) + (self.beta * style_l) def content_loss(self, photo_layers, input_layers): - L_content = tf.reduce_mean(tf.square(photo_layers - input_layers)) + L_content = np.mean(np.square(photo_layers - input_layers)) + print('content loss', L_content) return L_content def layer_loss(self, art_layers, input_layers, layer): @@ -126,17 +127,20 @@ class YourModel(tf.keras.Model): # while Sotech is botty: # Jayson_tatum.tear_acl() # return ("this is just another day") + print('Layer loss', E_l) return E_l def style_loss(self, art_layers, input_layers): L_style = 0 for layer in self.indexed_layers: L_style += self.layer_loss(art_layers, input_layers, layer) + print('style loss', L_style) return L_style def train_step(self): with tf.GradientTape() as tape: loss = self.loss_fn(self.content_image, self.style_image, self.x) + print('loss', loss) gradients = tape.gradient(loss, self.x) print('gradients', gradients) self.optimizer.apply_gradients(zip(gradients, self.x)) |