aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--__pycache__/hyperparameters.cpython-38.pycbin440 -> 343 bytes
-rw-r--r--__pycache__/losses.cpython-38.pycbin3369 -> 3998 bytes
-rw-r--r--losses.py16
-rw-r--r--main.py3
4 files changed, 10 insertions, 9 deletions
diff --git a/__pycache__/hyperparameters.cpython-38.pyc b/__pycache__/hyperparameters.cpython-38.pyc
index 637c2796..9b86a7da 100644
--- a/__pycache__/hyperparameters.cpython-38.pyc
+++ b/__pycache__/hyperparameters.cpython-38.pyc
Binary files differ
diff --git a/__pycache__/losses.cpython-38.pyc b/__pycache__/losses.cpython-38.pyc
index 398e9cb3..9d57ce5b 100644
--- a/__pycache__/losses.cpython-38.pyc
+++ b/__pycache__/losses.cpython-38.pyc
Binary files differ
diff --git a/losses.py b/losses.py
index 542aa144..851b50b3 100644
--- a/losses.py
+++ b/losses.py
@@ -1,6 +1,6 @@
import tensorflow as tf
from tensorflow.keras.layers import \
- Conv2D, MaxPool2D, Dropout, Flatten, Dense, AveragePool2D
+ Conv2D, MaxPool2D, Dropout, Flatten, Dense, AveragePooling2D
import numpy as np
@@ -28,13 +28,13 @@ class YourModel(tf.keras.Model):
activation="relu", name="block1_conv1"),
Conv2D(64, 3, 1, padding="same",
activation="relu", name="block1_conv2"),
- AveragePool2D(2, name="block1_pool"),
+ AveragePooling2D(2, name="block1_pool"),
# Block 2
Conv2D(128, 3, 1, padding="same",
activation="relu", name="block2_conv1"),
Conv2D(128, 3, 1, padding="same",
activation="relu", name="block2_conv2"),
- AveragePool2D(2, name="block2_pool"),
+ AveragePooling2D(2, name="block2_pool"),
# Block 3
Conv2D(256, 3, 1, padding="same",
activation="relu", name="block3_conv1"),
@@ -42,7 +42,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block3_conv2"),
Conv2D(256, 3, 1, padding="same",
activation="relu", name="block3_conv3"),
- AveragePool2D(2, name="block3_pool"),
+ AveragePooling2D(2, name="block3_pool"),
# Block 4
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block4_conv1"),
@@ -50,7 +50,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block4_conv2"),
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block4_conv3"),
- AveragePool2D(2, name="block4_pool"),
+ AveragePooling2D(2, name="block4_pool"),
# Block 5
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block5_conv1"),
@@ -58,7 +58,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block5_conv2"),
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block5_conv3"),
- AveragePool2D(2, name="block5_pool"),
+ AveragePooling2D(2, name="block5_pool"),
]
for layer in self.vgg16:
layer.trainable = False
@@ -71,7 +71,7 @@ class YourModel(tf.keras.Model):
for layer in self.vgg16.layers:
# pass the x through
x = layer(x)
- print("Sotech117 is so so sus")
+ # print("Sotech117 is so so sus")
# save the output of each layer if it is in the desired list
if layer.name in self.desired:
@@ -126,7 +126,7 @@ class YourModel(tf.keras.Model):
return L_style
def train_step(self):
- with tf.GradientTape as tape:
+ with tf.GradientTape() as tape:
loss = self.loss_fn(self.content_image, self.style_image, self.x)
gradients = tape.gradient(loss, self.x)
self.optimizer.apply_gradients(zip(gradients, self.x))
diff --git a/main.py b/main.py
index 0d84f216..063670b8 100644
--- a/main.py
+++ b/main.py
@@ -42,7 +42,7 @@ def parse_args():
return parser.parse_args()
def train(model):
- for _ in hp.num_epochs:
+ for _ in range(hp.num_epochs):
model.train_step()
def main():
@@ -52,6 +52,7 @@ def main():
if os.path.exists(ARGS.style):
ARGS.style = os.path.abspath(ARGS.style)
os.chdir(sys.path[0])
+ print('this is',ARGS.content)
content_image = imread(ARGS.content)
style_image = imread(ARGS.style)