1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
using Plots # for plotting trajectory
# simulation parameters
Δt = 0.01 # time step
y_min = 0.0
Δθ = 0.01 # in degrees
θ_start = 0.0 # in degrees
θ_end = 90.0 # in degrees
v_0 = 700.0 # in m/s
# constants
B_ref_over_m = 4.0 * 10^(-5) # in m-1, at 300K
T_ref = 300.0 # in kelvin
T_0 = 300.0 # in kelvin
g = 9.8 # in m/s^2
# isothermic parameters
y_o = 10 * 10^4 # k_BT/mg in meter
# adiabatic parameters
α = 2.5 # for air
a = 6.5 * 10^(-3) # in kelvin/meter
function isothermic!(
x::Vector{Float64}, y::Vector{Float64},
v_y::Vector{Float64}, v_x::Vector{Float64},
t::Vector{Float64})
while y[end] >= y_min
# decompose previous positions and velocities
x_i = x[end]
y_i = y[end]
v_x_i = v_x[end]
v_y_i = v_y[end]
# calculate new positions
x_new = x_i + v_x_i * Δt
y_new = y_i + v_y_i * Δt
# calculate drag force
v_i = sqrt(v_x_i^2 + v_y_i^2)
F_drag = - B_ref_over_m * (T_0 / T_ref)^α * # temperature variation
ℯ^(-y_i/y_o) # density/altitude variation
F_drag_x = F_drag * v_x_i * v_i
F_drag_y = F_drag * v_y_i * v_i
# calculate new velocities
v_x_new = v_x_i + F_drag_x * Δt
v_y_new = v_y_i + F_drag_y * Δt - g * Δt
# store new positions and velocities
push!(x, x_new)
push!(y, y_new)
push!(v_x, v_x_new)
push!(v_y, v_y_new)
push!(t, t[end] + Δt)
end
end
function adiabatic!(
x::Vector{Float64}, y::Vector{Float64},
v_y::Vector{Float64}, v_x::Vector{Float64},
t::Vector{Float64})
while y[end] >= y_min
# decompose previous positions and velocities
x_i = x[end]
y_i = y[end]
v_x_i = v_x[end]
v_y_i = v_y[end]
# calculate new positions
x_new = x_i + v_x_i * Δt
y_new = y_i + v_y_i * Δt
# calculate drag force
v_i = sqrt(v_x_i^2 + v_y_i^2)
F_drag = - B_ref_over_m * (T_0 / T_ref)^α * # temperature variation
(1 - ((a * y_i) / T_0))^α # density/altitude variation
F_drag_x = F_drag * v_x_i * v_i
F_drag_y = F_drag * v_y_i * v_i
# calculate new velocities
v_x_new = v_x_i + F_drag_x * Δt
v_y_new = v_y_i + F_drag_y * Δt - g * Δt
# store new positions and velocities
push!(x, x_new)
push!(y, y_new)
push!(v_x, v_x_new)
push!(v_y, v_y_new)
push!(t, t[end] + Δt)
end
en
function nodensity!(
x::Vector{Float64}, y::Vector{Float64},
v_y::Vector{Float64}, v_x::Vector{Float64},
t::Vector{Float64})
while y[end] >= y_min
# decompose previous positions and velocities
x_i = x[end]
y_i = y[end]
v_x_i = v_x[end]
v_y_i = v_y[end]
# calculate new positions
x_new = x_i + v_x_i * Δt
y_new = y_i + v_y_i * Δt
# calculate drag force
v_i = sqrt(v_x_i^2 + v_y_i^2)
F_drag = - B_ref_over_m # coefficient of drag alone
F_drag_x = F_drag * v_x_i * v_i
F_drag_y = F_drag * v_y_i * v_i
# calculate new velocities
v_x_new = v_x_i + F_drag_x * Δt
v_y_new = v_y_i + F_drag_y * Δt - g * Δt
# store new positions and velocities
push!(x, x_new)
push!(y, y_new)
push!(v_x, v_x_new)
push!(v_y, v_y_new)
push!(t, t[end] + Δt)
end
end
# interpolate the last point that's underground
function interpolate!(x::Vector{Float64}, y::Vector{Float64})
if y[end] == 0
return # no nothing if y is perfectly on 0
end
# calculate x_l, the interpolated x value at y=0
r = -y[end-1] / y[end]
x_l = (x[end-1] + r * x[end]) / (1 + r)
# set final values in the array to interpolated point on ground (y=0 )
x[end] = x_l
y[end] = 0.0
end
# arrays for holidng range and angle data
Θ_steps = Int64((θ_end - θ_start) / Δθ)
ranges_adi = zeros(Θ_steps + 1)
angles_adi = zeros(Θ_steps + 1)
ranges_iso = zeros(Θ_steps + 1)
angles_iso = zeros(Θ_steps + 1)
ranges_nod = zeros(Θ_steps + 1)
angles_nod = zeros(Θ_steps + 1)
for i in 1:Θ_steps+1
# arrays to store steps
θ = θ_start + (i-1) * Δθ
local x_adi = [0.0]
local y_adi = [0.0]
local v_x_adi = [v_0 * cosd(θ)]
local v_y_adi = [v_0 * sind(θ)]
local t_adi = [0.0]
local x_iso = [0.0]
local y_iso = [0.0]
local v_x_iso = [v_0 * cosd(θ)]
local v_y_iso = [v_0 * sind(θ)]
local t_iso = [0.0]
local x_nod = [0.0]
local y_nod = [0.0]
local v_x_nod = [v_0 * cosd(θ)]
local v_y_nod = [v_0 * sind(θ)]
local t_nod = [0.0]
# simulate the trajectory
adiabatic!(x_adi, y_adi, v_y_adi, v_x_adi, t_adi)
isothermic!(x_iso, y_iso, v_y_iso, v_x_iso, t_iso)
nodensity!(x_nod, y_nod, v_y_nod, v_x_nod, t_nod)
# interpolate the last point that's underground
interpolate!(x_adi, y_adi)
interpolate!(x_iso, y_iso)
interpolate!(x_nod, y_nod)
# store the range and angle
ranges_adi[i] = x_adi[end]
angles_adi[i] = θ
ranges_iso[i] = x_iso[end]
angles_iso[i] = θ
ranges_nod[i] = x_nod[end]
angles_nod[i] = θ
end
max_i_adi = argmax(ranges_adi)
max_i_iso = argmax(ranges_iso)
max_i_nod = argmax(ranges_nod)
# print the max range and angle
println("Max range (adiabatic): ", ranges_adi[max_i_adi], " at angle ", angles_adi[max_i_adi], " (T=", T_0, "K)")
println("Max range (isothermic): ", ranges_iso[max_i_iso], " at angle ", angles_iso[max_i_iso], " (T=", T_0, "K)")
println("Max range (no density model): ", ranges_nod[max_i_nod], " at angle ", angles_nod[max_i_nod], " (T=", T_0, "K)")
# plot the range over angles
plot_title = "Range over angle (T=$T_0 K)"
plot(angles_adi, ranges_adi, xlabel="angle (degrees)", ylabel="range (m)", title=plot_title, label="adiabatic", lw=2, color=:blue)
plot!(angles_iso, ranges_iso, label="isothermic", lw=2, color=:red)
plot!(angles_nod, ranges_nod, label="no density model", lw=2, color=:green)
|