1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia
# Simulate a solar system
using Plots # for plotting trajectory
using Measures # for adding margins to the plots (no cut-off labels)
using DifferentialEquations # for solving ODEs
using LinearAlgebra # for dot and cross products
G = 4.0*pi^2 # time scale = year and length scale = AU
mutable struct body
name::String # name of star or planet
m::Float64 # mass
r::Vector{Float64} # position vector
p::Vector{Float64} # momentum vector
end
function angularMomentum(b::body)
r = b.r
p = b.p
return cross(r, p)
end
function kineticEnergy(b::body)
p = b.p
m = b.m
return dot(p, p) / (2.0 * m)
end
function rp(b::body)
return [b.r; b.p]
end
function force(body1::body, body2::body)
r = body1.r - body2.r
rSquared = dot(r, r)
return -G * body1.m * body2.m * r * rSquared^(-1.5)
end
function potentialEnergy(body1::body, body2::body)
r = body1.r - body2.r
rSquared = dot(r, r)
return -G * body1.m * body2.m * rSquared^(-0.5)
end
mutable struct SolarSystem
bodies::Vector{body}
numberOfBodies::Int64
phaseSpace::Matrix{Float64} # 6N dimensional phase space
end
m = .00001
function SolarSystem()
bodies = Vector{body}()
push!(bodies, body("Sun", 1.0, zeros(3), zeros(3)))
push!(bodies, body("Star", 1.0, [1.0, 0.0, 0.0], [0.0, sqrt(1.95) * 2.0 * pi, 0.0]))
push!(bodies, body("Earth", m, [-2.84, 0.0, 0.0], [0.0, 0.0, 0.0]))
# -2.82 = negative ejection unstable, -2.83 positive ejection unstable
# -2.85 = stable , with noticable deviation
# -2.9 = no ejeciton, stable, -2.85 = stable, with noticable deviation
# .90 yields normal motion, .88 yields chaotic motion (1 ties with earth), .888 yields chaotic motion (2 ties with earth)
#push!(bodies, body("Jupiter", 1.0, [3.0, 0.0, 0.0], [0.0, 0.25 * pi, 0.0]))
numberOfBodies = size(bodies)[1]
phaseSpace = zeros(6, 0)
for b in bodies
phaseSpace = [phaseSpace rp(b)]
end
return SolarSystem(bodies, numberOfBodies, phaseSpace)
end
function TotalAngularMomentum(s::SolarSystem)
L = zeros(3)
for b in s.bodies
L += angularMomentum(b)
end
return L
end
function TotalEnergy(s::SolarSystem)
ke = 0.0
pe = 0.0
for body1 in s.bodies
ke += kineticEnergy(body1)
for body2 in s.bodies
if (body1 != body2)
pe += 0.5 * potentialEnergy(body1, body2)
end
end
end
return pe + ke
end
function ZeroOutLinearMomentum!(s::SolarSystem)
totalLinearMomentum = zeros(3)
totalMass = 0.0
for body in s.bodies
totalLinearMomentum += body.p
totalMass += body.m
end
s.phaseSpace = zeros(6, 0)
for body in s.bodies
body.p -= body.m * totalLinearMomentum / totalMass
s.phaseSpace = [s.phaseSpace rp(body)]
end
return nothing
end
function tendency!(dps, ps, s::SolarSystem, t)
i = 1 # update phase space of individual bodies
for b in s.bodies
b.r = ps[1:3, i]
b.p = ps[4:6, i]
i += 1
end
# find velocities of bodies and forces on them. O(N^2) computational cost
N = s.numberOfBodies
for i in 1:N
b1 = s.bodies[i]
dps[1:3, i] = b1.p / b1.m #dr/dt
dps[4:6, i] = zeros(3)
for j in 1:i-1
b2 = s.bodies[j]
f = force(b1, b2) # call only once
dps[4:6, i] += f
dps[4:6, j] -= f # Newton's 3rd law
end
end
return nothing
end
s = SolarSystem()
ZeroOutLinearMomentum!(s)
println(typeof(s))
println("Initial total energy = ", TotalEnergy(s))
println("Initial total angular momentum = ", TotalAngularMomentum(s))
println("Number of bodies = ", s.numberOfBodies)
for b in s.bodies
println("body name = ", b.name)
end
t_final = 250.0 # final time of simulation
tspan = (0.0, t_final) # span of time to simulate
prob = ODEProblem(tendency!, s.phaseSpace, tspan, s) # specify ODE
sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy
sample_times = sol.t
println("\n\t Results")
println("Final time = ", sample_times[end])
println("Final total energy = ", TotalEnergy(s))
println("Final total angular momentum = ", TotalAngularMomentum(s))
body1 = 1
body2 = 2
body3 = 3 # planet
# Plot of position vs. time
xt = plot(sample_times, sol[1, body1, :], xlabel = "t", ylabel = "x(t)", legend = false, title = "x vs. t")
# Plot of orbit
xy = plot([(sol[1, body1, :], sol[2, body1, :]), (sol[1, body2, :], sol[2, body2, :])], colors = ("yellow", "green"), xlabel = "x", ylabel = "y", legend = false, title = "Orbit")
# Plot of body 1 orbit
xy_b1 = plot(sol[1, body1, :], sol[2, body1, :], xlabel = "x", ylabel = "y", legend = false, title = "Orbit Star 1", color="orange", label="Star 1")
# Plot of body 2 orbit
xy_b2 = plot(sol[1, body2, :], sol[2, body2, :], xlabel = "x", ylabel = "y", legend = false, title = "Orbit Star 2", color="green", label="Star 2")
# Plot of body 3 orbit
xy_planet = plot(sol[1, body3, :], sol[2, body3, :], xlabel = "x", ylabel = "y", legend = false, title = "Orbit Earth", color="blue", label="Planet")
# Plot of the orbits overlapping
xy_all = plot(sol[1, body1, :], sol[2, body1, :], xlabel = "x", ylabel = "y", title = "Orbits (earth, x_0=-10, m=$(m))", aspect_ratio=:equal, legend=:bottomright, color="orange", label="Star 1");
plot!(xy_all, sol[1, body2, :], sol[2, body2, :], color="green", label="Star 2")
plot!(xy_all, sol[1, body3, :], sol[2, body3, :], color="blue", label="Planet")
plot(
xy_all, xy_b1, xy_b2, xy_planet,
aspect_ratio=:equal,
layout=(1,4), size=(1200, 300),
left_margin=7mm, bottom_margin=7mm
)
savefig("hw4/4-13-m-$(m).png")
# samples = 1000
# interval = floor(Int,size(sol.t)[1] / samples)
# animation = @animate for i=1:samples-1
# plot([(sol[1, body1, i*interval], sol[2, body1, i*interval]), (sol[1, body1, (i+1)*interval], sol[2, body1, (i+1)*interval])],
# aspect_ratio=:equal, colors = ("yellow", "green"), xlabel = "x", ylabel = "y", legend = false, title = "Orbit", xlims=(-1, 1), ylims = (-1, 1))
# end
# gif(animation, fps=15)
|