aboutsummaryrefslogtreecommitdiff
path: root/hw6/8-11.jl
blob: e8a0b2e8ac3437bd63abcaf0cd52bfc2767fd2a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# FOR PROBLEM 8.11
# author: sotech117

using Statistics 
using Plots

function wrap_index(i::Int, l::Int)::Int
	wrap = (i - 1) % l + 1
	return (wrap <= 0) ? l + wrap : wrap
end

mutable struct Ising2D
	l::Int 
	n::Int 
	temperature::Float64
	w::Vector{Float64} # Boltzmann weights
	state::Matrix 
	energy::Int
	magnetization::Int
	mc_steps::Int 
	accepted_moves::Int 
	energy_array::Vector{Int}
	magnetization_array::Vector{Int}
end 

Ising2D(l::Int, temperature::Float64) = begin	
	n = l^2 
	w = zeros(9)
	w[9] = exp(-8.0 / temperature)
	w[5] = exp(-4.0 / temperature)
	state = ones(Int, l, l) # initially all spins up
	energy = -2 * n
	magnetization = n
	return Ising2D(l, n, temperature, w, state, energy, magnetization, 0, 0, 
				   Int[], Int[])
end

function reset!(ising::Ising2D)
	ising.mc_steps = 0 
	ising.accepted_moves = 0 
	ising.energy_array = Int[] 
	ising.magnetization_array = Int[] 
end

function mc_step!(ising::Ising2D) 
	l::Int = ising.l 
	n::Int = ising.n 
	w = ising.w 

	state = ising.state 
	accepted_moves = ising.accepted_moves
	energy = ising.energy 
	magnetization = ising.magnetization

	random_positions = l * rand(2 * n)
	random_array = rand(n) 

	for k in 1:n
		i = trunc(Int, random_positions[2 * k - 1]) + 1 
		j = trunc(Int, random_positions[2 * k]) + 1 

		de = 2 * state[i, j] * (state[i % l + 1, j] + 
				state[wrap_index(i - 1, l), j] + state[i, j % l + 1] + 
				state[i, wrap_index(j - 1, l)])

		if de <= 0 || w[de + 1] > random_array[k]
			accepted_moves += 1 
			new_spin = - state[i, j] # flip spin
			state[i, j] = new_spin 
			energy += de 
			magnetization += 2 * new_spin
		end

	end

	ising.state = state 
	ising.accepted_moves = accepted_moves
	ising.energy = energy 
	ising.magnetization = magnetization 

	append!(ising.energy_array, ising.energy) 
	append!(ising.magnetization_array, ising.magnetization)
	ising.mc_steps = ising.mc_steps + 1
end

function steps!(ising::Ising2D, num::Int=100)
	for i in 1:num
		mc_step!(ising)
	end 
end

function mean_energy(ising::Ising2D)
	return mean(ising.energy_array) / ising.n
end 

function specific_heat(ising::Ising2D)
	return (std(ising.energy_array) / ising.temperature) ^ 2 / ising.n
end

function mean_magnetization(ising::Ising2D)
	return mean(ising.magnetization_array) / ising.n
end

function susceptibility(ising::Ising2D)
	return (std(ising.magnetization_array)) ^ 2 / (ising.temperature * ising.n)	
end

function observables(ising::Ising2D)
	printstyled("Temperature\t\t", bold=true)
	print(ising.temperature); print("\n")

	printstyled("Mean Energy\t\t", bold=true)
	print(mean_energy(ising)); print("\n")

	printstyled("Mean Magnetiz.\t\t", bold=true)
	print(mean_magnetization(ising)); print("\n")

	printstyled("Specific Heat\t\t", bold=true)
	print(specific_heat(ising)); print("\n")

	printstyled("Susceptibility\t\t", bold=true)
	print(susceptibility(ising)); print("\n")

	printstyled("MC Steps\t\t", bold=true)
	print(ising.mc_steps); print("\n")
	printstyled("Accepted Moves\t\t", bold=true)
	print(ising.accepted_moves); print("\n")
end


function plot_ising(state::Matrix{Int})
	pos = Tuple.(findall(>(0), state))
	neg = Tuple.(findall(<(0), state))
	scatter(pos, markersize=5)
	scatter!(neg, markersize=5)
end


function get_magnetization(T, n=1000)
    m = Ising2D(64, T)
    steps!(m, n)

    println("done with T = $T")
    return mean_magnetization(m)
end

Ts = 0:.1:5
ms = [abs(get_magnetization(T)) for T in Ts]

println("done with calculating magnetizations")

function linear_regression(x, y)
    n = length(x)
     = sum(x) / n
     = sum(y) / n
    a = sum((x .- ) .* (y .- )) / sum((x .- ).^2)
    b =  - a * 
    return (a, b)
end

# plot M^(8) over T
betas = .001:.001:1
residuals = []
for i in 1:length(betas)
    b = betas[i]
    m = ms .^ (1 / b)
    # filter out the zero values


    s = scatter(p,
        Ts, m, xlabel="T (units of J / k_b)", ylabel="Magnetization", label="$b-beta", title="Magnetization vs Temp (Ising Monte Carlo)",
        msw=0, ms=1.5, mc=:red, lc=:red, lw=1.5, legend=:bottomleft
    )


    # do a linear regression
    a, b = linear_regression(Ts, m)

    # plot a linear regression line
    plot!(s, Ts, a*Ts .+ b, label="Linear Regression", lw=1.2, color=:red, linestyle=:dash)

    # calculate the residuals
    push!(residuals, sum((m .- (a*Ts .+ b)).^2))


    savefig(s, "hw6/b/8-2-$i.png")
end

# plot the residuals over beta
plot(betas, residuals, xlabel="beta", ylabel="Squared Distance", label="Residuals", title="Error from Linear Regression of M^(1/Beta)", lw=1.2, lc=:red, legend=:topright)
# find the min on the first half of the residuals
min_residuali = argmin(residuals[1:div(length(residuals), 2)])
min_residual = betas[min_residuali]
println("Minimum Residual: ", min_residual)
vline!([min_residual], label="Minimum Point @ Beta = $min_residual", lc=:orange, lw=1.5, ls=:dash)
# plot the analityical beta of .125
vline!([.125], label="Analytical Minimum Beta = .125", lc=:green, lw=1.5, ls=:dot)
savefig("hw6/8-2-residuals-100.png")