1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
using Pkg
Pkg.add("Plots")
using Plots
function del2_5(a::Matrix{Float64}, dx = 1.0)
#=
Returns a finite-difference approximation of the laplacian of the array a,
with lattice spacing dx, using the five-point stencil:
0 1 0
1 -4 1
0 1 0
=#
del2 = zeros(size(a))
del2[2:end-1, 2:end-1] .= (a[2:end-1, 3:end] + a[2:end-1, 1:end-2] +
a[3:end, 2:end-1] + a[1:end-2, 2:end-1] -
4.0 * a[2:end-1, 2:end-1]) ./ (dx^2)
return del2
end
function del2_9(a::Matrix{Float64}, dx = 1.0)
#=
Returns a finite-difference approximation of the laplacian of the array a,
with lattice spacing dx, using the nine-point stencil:
1/6 2/3 1/6
2/3 -10/3 2/3
1/6 2/3 1/6
=#
del2 = zeros(size(a))
del2[2:end-1, 2:end-1] .= (4.0 * (a[2:end-1, 3:end] + a[2:end-1, 1:end-2] +
a[3:end, 2:end-1] + a[1:end-2, 2:end-1]) +
(a[1:end-2, 1:end-2] + a[1:end-2, 3:end] +
a[3:end, 1:end-2] + a[3:end, 3:end]) -
20.0 * a[2:end-1, 2:end-1]) ./ (6.0 * dx^2)
return del2
end
function invDel2_5(b::Matrix{Float64}, dx = 1.0, N = 10000)
#=
Relaxes over N steps to a discrete approximation of the inverse laplacian
of the source term b, each step is a weighted average over the four neighboring
points and the source. This is the Jacobi algorithm.
=#
invDel2 = zeros(size(b))
newInvDel2 = zeros(size(b))
for m in 1:N
newInvDel2[2:end-1, 2:end-1] .= 0.25 * (invDel2[2:end-1, 3:end] +
invDel2[2:end-1, 1:end-2] +
invDel2[3:end, 2:end-1] +
invDel2[1:end-2, 2:end-1] -
(dx^2) * b[2:end-1, 2:end-1])
invDel2 .= newInvDel2
end
diff = del2_5(invDel2, dx) - b
diffSq = diff .* diff
error = sqrt(sum(diffSq))
println("\nerror = ", error)
return invDel2
end
# # Define variables
# L = 10
# dx = 1.0
# # Parabola of revolution has constant Laplacian
# phi = zeros((L, L))
# for i ∈ 1:L
# x = (i + 0.5 - 0.5 * L) * dx
# for j ∈ 1:L
# y = (j + 0.5 - 0.5 * L) * dx
# phi[i, j] = x^2 + y^2
# end
# end
# println(size(phi))
# println(del2_5(phi, dx))
# println("\n\n")
# println(del2_9(phi, dx))
# Electrostatics example: uniformly charged cylinder (rho = 1) of radius R
L = 100
dx = 1.0
R = 1.0
R2 = R^2
# Charge distribution
rho = zeros((L, L))
for i ∈ 1:L
y = (i - 1 + 0.5 - 0.5 * L) * dx
println("y = ", y)
for j ∈ 1:L
x = (j - 1 + 0.5 - 0.5 * L) * dx
# this is the rod here
if y < 0 && abs(x) < R
rho[i, j] = 1.0 # high voltage
elseif y > 0 && abs(x) < R
rho[i, j] = -1.0 # conducting plane
else
rho[i, j] = 0.0
end
end
end
rhoPlot = plot(rho[Int(L / 2), :])
# Exact (analytical) electric potential
# phi = zeros((L, L))
# for i ∈ 1:L
# x = (i + 0.5 - 0.5 * L) * dx
# for j ∈ 1:L
# y = (j + 0.5 - 0.5 * L) * dx
# r2 = x^2 + y^2
# if r2 < R2
# phi[i, j] = -π * r2
# else
# phi[i, j] = -π * (R2 + R2 * log(r2 / R2))
# end
# end
# end
# phiPlot = plot(phi[Int(L / 2), :])
# Charge density obtained from exact potential
# rho = -1.0 / (4.0 * π) * del2_5(phi, dx)
# rhoPlotLattice = plot(rho[Int(L / 2), :])
function calc_field(phi::Matrix{Float64}, dx = 1.0)
E_x = zeros(size(phi))
E_y = zeros(size(phi))
E_x[2:end-1, 2:end-1] .= -(phi[3:end, 2:end-1] - phi[1:end-2, 2:end-1]) / (2 * dx)
E_y[2:end-1, 2:end-1] .= -(phi[2:end-1, 3:end] - phi[2:end-1, 1:end-2]) / (2 * dx)
# for i ∈ 2:size(phi, 1)-1
# for j ∈ 2:size(phi, 2)-1
# E_x[i, j] = -(phi[i+1, j] - phi[i-1, j]) / (2 * dx)
# E_y[i, j] = -(phi[i, j+1] - phi[i, j-1]) / (2 * dx)
# end
# end
return E_x, E_y
end
phi = invDel2_5(-4.0 * π * rho, dx, 1000)
# phi = invDelSOR(-4.0 * π * rho, dx, 500)
phi .-= phi[Int(L / 2), Int(L / 2)]
phiPlotInvDel = plot(phi[Int(L / 2), :])
# phi_contour = contourf(phi, title = "Electric Potential", color = :viridis, aspect_ratio = :equal, colorbar_title = "V")
# savefig(phi_contour, "hw7/5.6-phi.png")
# plot the arrows of the magnatic field on the contour plot
xxs = [x for x in 1:L for y in 1:L]
xxy = [y for x in 1:L for y in 1:L]
d_x, d_y = calc_field(phi, dx)
function df(i, j)
norm = d_x[Int64(i)] * d_x[Int64(i)] + d_y[Int64(j)] * d_y[Int64(j)]
if norm == 0
return (0, 0)
end
return (d_x[Int64(i)] / norm, d_y[Int64(j)] / norm)
end
quiver(xxs, xxy, quiver = df, aspect_ratio = :equal, legend = false)
savefig("hw7/5.6-test.png")
# d_x, d_y = calc_field(phi, dx)
# field_y = contourf(d_y, title = "Electric Field (y)", color = :viridis, aspect_ratio = :equal, colorbar_title = "V/m")
# field_x = contourf(d_x, title = "Electric Field (x)", color = :viridis, aspect_ratio = :equal, colorbar_title = "V/m")
# savefig(field_y, "hw7/5.6-fy.png")
# savefig(field_x, "hw7/5.6-fx.png")
#plot(rhoPlot, rhoPlotLattice)
#plot(phiPlot, phiPlotInvDel)
|