aboutsummaryrefslogtreecommitdiff
path: root/t/disp.jl
blob: 41ee2bb4d1f5a12a17830c6255bdd17bea6bc4fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
function calculate_force(
	left_pos,
	middle_pos,
	right_pos,
	K,
	alpha = 0,
	beta = 0,
)
	linear_force = K * (middle_pos - left_pos + middle_pos - right_pos)
	quadratic_force = alpha * (middle_pos - left_pos)^2 + alpha * (middle_pos - right_pos)^2
	cubic_force = beta * (middle_pos - left_pos)^3 + beta * (middle_pos - right_pos)^3
	return linear_force + quadratic_force + cubic_force
end

function tendency!(du, u, p, t)
	# unpack the params
	N, K, m = p

	# get the positions and momenta
	qs = u[1:2:end]
	ps = u[2:2:end]

	# go over the points in the lattice and update the state
	for i in 2:N-1
		mass = m
		if i == 2 * Int(N / 2) - 1 || i == 2 * Int(N / 2)
			mass = 10000
		end

		du[i*2-1] = ps[i] / mass
		force =
			du[i*2] = force / mass
	end

	force_end = K * (qs[2] - 2 * qs[1] + qs[N-1])
	du[1] = ps[1] / m
	du[2] = force_end / m
	du[end-1] = ps[end] / m
	du[end] = force_end / m
end

function get_initial_state(
	N,
	initial_displacement = 2,
	initial_velocity = 0,
)
	state = zeros(2 * N)

	middle_index = 2 * Int(N / 2) - 1 # middle mass
	state[middle_index] = initial_displacement
	state[middle_index+1] = initial_velocity
	return state
end

using DifferentialEquations
function run_simulation(
	N,
	K,
	m,
	final_time,
	initial_displacement = 2,
	initial_velocity = 0,
)
	println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n")
	s_0 = get_initial_state(N, initial_displacement, initial_velocity)

	# pack the params
	p = N, K, m
	t_span = (0.0, final_time)
	prob = ODEProblem(tendency!, s_0, t_span, p)
	sol = solve(prob, Tsit5(), reltol = 1e-10, abstol = 1e-10) # control simulation

	println("Done Running Sim!\n\n")
	return sol
end

using Plots
function animate_positions(
	states,
	time_steps,
	time_min = 0,
	time_max = 30,
	red_threshold = 2,
)
	println("Animating positions")
	anim = @animate for i in 1:length(time_steps)
		t = time_steps[i]
		if t < time_min
			continue
		end
		if t > time_max
			break
		end
		positions = states[i][1:2:end]
		v_middle = states[i][Int(length(states[1]) / 2)]
		# plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3))
		if v_middle >= red_threshold
			plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3),
				color = :red, legend = :topright,
			)
		else
			plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3),
				color = :blue, legend = :topright,
			)
		end
	end
	mp4(anim, "t/animate-positions.mp4", fps = 30)
	println("Done animating positions")
end

function plot_starting_and_final_positions(
	states,
	time_steps,
)
	p1 = plot(states[1][1:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "First Three Modes")
	plot!(p1, states[end][1:2:end], label = "Final", marker = :circle)

	# plot the vels
	p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "First Three Modes")
	plot!(p2, states[end][2:2:end], label = "Final", marker = :circle)

	# save the plots
	savefig(p1, "t/initial-final-positions.png")
	savefig(p2, "t/initial-final-velocities.png")
end

function analyize_vels(
	states,
	time_steps,
	threshold = 1.975,
)
	println("Analyzing velocities:\n")
	output = []
	for i in 1:length(states)
		if states[i][Int(length(states[i]) / 2)] >= threshold
			push!(output, i)
			println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)])
		end
	end

	# plot the first 10 seconds of Velocity
	data = []
	for i in 1:length(states)
		if time_steps[i] > 10
			break
		end
		push!(data, states[i][Int(length(states[i]) / 2)])
	end
	p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity")
	savefig(p, "t/velocity-over-time.png")

	println("\nDone!\n\n")
	return output
end

# Run the simulation
N = 10 # number of masses
beta = 0 # cubic string spring
K = 100 # spring constant
A = 10 # amplitude
final_time = 10000 # seconds
m = 1 # mass of particles
plot_data = []

my_vel = 10

sol = run_simulation(N, K, m, final_time, 0, my_vel)

println("final time: ", sol.t[end])
# s = sol.u[1:2:end]
analyize_vels(sol.u, sol.t, my_vel)
plot_starting_and_final_positions(sol.u, sol.t)
animate_positions(sol.u, sol.t, 0, 1, my_vel)