aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/narwhals/_arrow/series_dt.py
blob: 75aaec5e1f76199e16e69cabf9beff619777cc24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Callable, ClassVar, Mapping, cast

import pyarrow as pa
import pyarrow.compute as pc

from narwhals._arrow.utils import UNITS_DICT, ArrowSeriesNamespace, floordiv_compat, lit
from narwhals._duration import parse_interval_string

if TYPE_CHECKING:
    from typing_extensions import TypeAlias

    from narwhals._arrow.series import ArrowSeries
    from narwhals._arrow.typing import ChunkedArrayAny, ScalarAny
    from narwhals.dtypes import Datetime
    from narwhals.typing import TimeUnit

    UnitCurrent: TypeAlias = TimeUnit
    UnitTarget: TypeAlias = TimeUnit
    BinOpBroadcast: TypeAlias = Callable[[ChunkedArrayAny, ScalarAny], ChunkedArrayAny]
    IntoRhs: TypeAlias = int


class ArrowSeriesDateTimeNamespace(ArrowSeriesNamespace):
    _TIMESTAMP_DATE_FACTOR: ClassVar[Mapping[TimeUnit, int]] = {
        "ns": 1_000_000_000,
        "us": 1_000_000,
        "ms": 1_000,
        "s": 1,
    }
    _TIMESTAMP_DATETIME_OP_FACTOR: ClassVar[
        Mapping[tuple[UnitCurrent, UnitTarget], tuple[BinOpBroadcast, IntoRhs]]
    ] = {
        ("ns", "us"): (floordiv_compat, 1_000),
        ("ns", "ms"): (floordiv_compat, 1_000_000),
        ("us", "ns"): (pc.multiply, 1_000),
        ("us", "ms"): (floordiv_compat, 1_000),
        ("ms", "ns"): (pc.multiply, 1_000_000),
        ("ms", "us"): (pc.multiply, 1_000),
        ("s", "ns"): (pc.multiply, 1_000_000_000),
        ("s", "us"): (pc.multiply, 1_000_000),
        ("s", "ms"): (pc.multiply, 1_000),
    }

    @property
    def unit(self) -> TimeUnit:  # NOTE: Unsafe (native).
        return cast("pa.TimestampType[TimeUnit, Any]", self.native.type).unit

    @property
    def time_zone(self) -> str | None:  # NOTE: Unsafe (narwhals).
        return cast("Datetime", self.compliant.dtype).time_zone

    def to_string(self, format: str) -> ArrowSeries:
        # PyArrow differs from other libraries in that %S also prints out
        # the fractional part of the second...:'(
        # https://arrow.apache.org/docs/python/generated/pyarrow.compute.strftime.html
        format = format.replace("%S.%f", "%S").replace("%S%.f", "%S")
        return self.with_native(pc.strftime(self.native, format))

    def replace_time_zone(self, time_zone: str | None) -> ArrowSeries:
        if time_zone is not None:
            result = pc.assume_timezone(pc.local_timestamp(self.native), time_zone)
        else:
            result = pc.local_timestamp(self.native)
        return self.with_native(result)

    def convert_time_zone(self, time_zone: str) -> ArrowSeries:
        ser = self.replace_time_zone("UTC") if self.time_zone is None else self.compliant
        return self.with_native(ser.native.cast(pa.timestamp(self.unit, time_zone)))

    def timestamp(self, time_unit: TimeUnit) -> ArrowSeries:
        ser = self.compliant
        dtypes = ser._version.dtypes
        if isinstance(ser.dtype, dtypes.Datetime):
            current = ser.dtype.time_unit
            s_cast = self.native.cast(pa.int64())
            if current == time_unit:
                result = s_cast
            elif item := self._TIMESTAMP_DATETIME_OP_FACTOR.get((current, time_unit)):
                fn, factor = item
                result = fn(s_cast, lit(factor))
            else:  # pragma: no cover
                msg = f"unexpected time unit {current}, please report an issue at https://github.com/narwhals-dev/narwhals"
                raise AssertionError(msg)
            return self.with_native(result)
        elif isinstance(ser.dtype, dtypes.Date):
            time_s = pc.multiply(self.native.cast(pa.int32()), lit(86_400))
            factor = self._TIMESTAMP_DATE_FACTOR[time_unit]
            return self.with_native(pc.multiply(time_s, lit(factor)))
        else:
            msg = "Input should be either of Date or Datetime type"
            raise TypeError(msg)

    def date(self) -> ArrowSeries:
        return self.with_native(self.native.cast(pa.date32()))

    def year(self) -> ArrowSeries:
        return self.with_native(pc.year(self.native))

    def month(self) -> ArrowSeries:
        return self.with_native(pc.month(self.native))

    def day(self) -> ArrowSeries:
        return self.with_native(pc.day(self.native))

    def hour(self) -> ArrowSeries:
        return self.with_native(pc.hour(self.native))

    def minute(self) -> ArrowSeries:
        return self.with_native(pc.minute(self.native))

    def second(self) -> ArrowSeries:
        return self.with_native(pc.second(self.native))

    def millisecond(self) -> ArrowSeries:
        return self.with_native(pc.millisecond(self.native))

    def microsecond(self) -> ArrowSeries:
        arr = self.native
        result = pc.add(pc.multiply(pc.millisecond(arr), lit(1000)), pc.microsecond(arr))
        return self.with_native(result)

    def nanosecond(self) -> ArrowSeries:
        result = pc.add(
            pc.multiply(self.microsecond().native, lit(1000)), pc.nanosecond(self.native)
        )
        return self.with_native(result)

    def ordinal_day(self) -> ArrowSeries:
        return self.with_native(pc.day_of_year(self.native))

    def weekday(self) -> ArrowSeries:
        return self.with_native(pc.day_of_week(self.native, count_from_zero=False))

    def total_minutes(self) -> ArrowSeries:
        unit_to_minutes_factor = {
            "s": 60,  # seconds
            "ms": 60 * 1e3,  # milli
            "us": 60 * 1e6,  # micro
            "ns": 60 * 1e9,  # nano
        }
        factor = lit(unit_to_minutes_factor[self.unit], type=pa.int64())
        return self.with_native(pc.divide(self.native, factor).cast(pa.int64()))

    def total_seconds(self) -> ArrowSeries:
        unit_to_seconds_factor = {
            "s": 1,  # seconds
            "ms": 1e3,  # milli
            "us": 1e6,  # micro
            "ns": 1e9,  # nano
        }
        factor = lit(unit_to_seconds_factor[self.unit], type=pa.int64())
        return self.with_native(pc.divide(self.native, factor).cast(pa.int64()))

    def total_milliseconds(self) -> ArrowSeries:
        unit_to_milli_factor = {
            "s": 1e3,  # seconds
            "ms": 1,  # milli
            "us": 1e3,  # micro
            "ns": 1e6,  # nano
        }
        factor = lit(unit_to_milli_factor[self.unit], type=pa.int64())
        if self.unit == "s":
            return self.with_native(pc.multiply(self.native, factor).cast(pa.int64()))
        return self.with_native(pc.divide(self.native, factor).cast(pa.int64()))

    def total_microseconds(self) -> ArrowSeries:
        unit_to_micro_factor = {
            "s": 1e6,  # seconds
            "ms": 1e3,  # milli
            "us": 1,  # micro
            "ns": 1e3,  # nano
        }
        factor = lit(unit_to_micro_factor[self.unit], type=pa.int64())
        if self.unit in {"s", "ms"}:
            return self.with_native(pc.multiply(self.native, factor).cast(pa.int64()))
        return self.with_native(pc.divide(self.native, factor).cast(pa.int64()))

    def total_nanoseconds(self) -> ArrowSeries:
        unit_to_nano_factor = {
            "s": 1e9,  # seconds
            "ms": 1e6,  # milli
            "us": 1e3,  # micro
            "ns": 1,  # nano
        }
        factor = lit(unit_to_nano_factor[self.unit], type=pa.int64())
        return self.with_native(pc.multiply(self.native, factor).cast(pa.int64()))

    def truncate(self, every: str) -> ArrowSeries:
        multiple, unit = parse_interval_string(every)
        return self.with_native(
            pc.floor_temporal(self.native, multiple=multiple, unit=UNITS_DICT[unit])
        )