aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/narwhals/_dask/namespace.py
blob: 3e0506de097706a7d539470f145d47188e2ffba0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import annotations

import operator
from functools import reduce
from typing import TYPE_CHECKING, Iterable, Sequence, cast

import dask.dataframe as dd
import pandas as pd

from narwhals._compliant import CompliantThen, CompliantWhen, LazyNamespace
from narwhals._compliant.namespace import DepthTrackingNamespace
from narwhals._dask.dataframe import DaskLazyFrame
from narwhals._dask.expr import DaskExpr
from narwhals._dask.selectors import DaskSelectorNamespace
from narwhals._dask.utils import (
    align_series_full_broadcast,
    narwhals_to_native_dtype,
    validate_comparand,
)
from narwhals._expression_parsing import (
    ExprKind,
    combine_alias_output_names,
    combine_evaluate_output_names,
)
from narwhals._utils import Implementation

if TYPE_CHECKING:
    import dask.dataframe.dask_expr as dx

    from narwhals._utils import Version
    from narwhals.typing import ConcatMethod, IntoDType, NonNestedLiteral


class DaskNamespace(
    LazyNamespace[DaskLazyFrame, DaskExpr, dd.DataFrame],
    DepthTrackingNamespace[DaskLazyFrame, DaskExpr],
):
    _implementation: Implementation = Implementation.DASK

    @property
    def selectors(self) -> DaskSelectorNamespace:
        return DaskSelectorNamespace.from_namespace(self)

    @property
    def _expr(self) -> type[DaskExpr]:
        return DaskExpr

    @property
    def _lazyframe(self) -> type[DaskLazyFrame]:
        return DaskLazyFrame

    def __init__(self, *, backend_version: tuple[int, ...], version: Version) -> None:
        self._backend_version = backend_version
        self._version = version

    def lit(self, value: NonNestedLiteral, dtype: IntoDType | None) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            if dtype is not None:
                native_dtype = narwhals_to_native_dtype(dtype, self._version)
                native_pd_series = pd.Series([value], dtype=native_dtype, name="literal")
            else:
                native_pd_series = pd.Series([value], name="literal")
            npartitions = df._native_frame.npartitions
            dask_series = dd.from_pandas(native_pd_series, npartitions=npartitions)
            return [dask_series[0].to_series()]

        return self._expr(
            func,
            depth=0,
            function_name="lit",
            evaluate_output_names=lambda _df: ["literal"],
            alias_output_names=None,
            backend_version=self._backend_version,
            version=self._version,
        )

    def len(self) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            # We don't allow dataframes with 0 columns, so `[0]` is safe.
            return [df._native_frame[df.columns[0]].size.to_series()]

        return self._expr(
            func,
            depth=0,
            function_name="len",
            evaluate_output_names=lambda _df: ["len"],
            alias_output_names=None,
            backend_version=self._backend_version,
            version=self._version,
        )

    def all_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            series = align_series_full_broadcast(
                df, *(s for _expr in exprs for s in _expr(df))
            )
            return [reduce(operator.and_, series)]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="all_horizontal",
            evaluate_output_names=combine_evaluate_output_names(*exprs),
            alias_output_names=combine_alias_output_names(*exprs),
            backend_version=self._backend_version,
            version=self._version,
        )

    def any_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            series = align_series_full_broadcast(
                df, *(s for _expr in exprs for s in _expr(df))
            )
            return [reduce(operator.or_, series)]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="any_horizontal",
            evaluate_output_names=combine_evaluate_output_names(*exprs),
            alias_output_names=combine_alias_output_names(*exprs),
            backend_version=self._backend_version,
            version=self._version,
        )

    def sum_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            series = align_series_full_broadcast(
                df, *(s for _expr in exprs for s in _expr(df))
            )
            return [dd.concat(series, axis=1).sum(axis=1)]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="sum_horizontal",
            evaluate_output_names=combine_evaluate_output_names(*exprs),
            alias_output_names=combine_alias_output_names(*exprs),
            backend_version=self._backend_version,
            version=self._version,
        )

    def concat(
        self, items: Iterable[DaskLazyFrame], *, how: ConcatMethod
    ) -> DaskLazyFrame:
        if not items:
            msg = "No items to concatenate"  # pragma: no cover
            raise AssertionError(msg)
        dfs = [i._native_frame for i in items]
        cols_0 = dfs[0].columns
        if how == "vertical":
            for i, df in enumerate(dfs[1:], start=1):
                cols_current = df.columns
                if not (
                    (len(cols_current) == len(cols_0)) and (cols_current == cols_0).all()
                ):
                    msg = (
                        "unable to vstack, column names don't match:\n"
                        f"   - dataframe 0: {cols_0.to_list()}\n"
                        f"   - dataframe {i}: {cols_current.to_list()}\n"
                    )
                    raise TypeError(msg)
            return DaskLazyFrame(
                dd.concat(dfs, axis=0, join="inner"),
                backend_version=self._backend_version,
                version=self._version,
            )
        if how == "diagonal":
            return DaskLazyFrame(
                dd.concat(dfs, axis=0, join="outer"),
                backend_version=self._backend_version,
                version=self._version,
            )

        raise NotImplementedError

    def mean_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            expr_results = [s for _expr in exprs for s in _expr(df)]
            series = align_series_full_broadcast(df, *(s.fillna(0) for s in expr_results))
            non_na = align_series_full_broadcast(
                df, *(1 - s.isna() for s in expr_results)
            )
            num = reduce(lambda x, y: x + y, series)  # pyright: ignore[reportOperatorIssue]
            den = reduce(lambda x, y: x + y, non_na)  # pyright: ignore[reportOperatorIssue]
            return [cast("dx.Series", num / den)]  # pyright: ignore[reportOperatorIssue]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="mean_horizontal",
            evaluate_output_names=combine_evaluate_output_names(*exprs),
            alias_output_names=combine_alias_output_names(*exprs),
            backend_version=self._backend_version,
            version=self._version,
        )

    def min_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            series = align_series_full_broadcast(
                df, *(s for _expr in exprs for s in _expr(df))
            )

            return [dd.concat(series, axis=1).min(axis=1)]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="min_horizontal",
            evaluate_output_names=combine_evaluate_output_names(*exprs),
            alias_output_names=combine_alias_output_names(*exprs),
            backend_version=self._backend_version,
            version=self._version,
        )

    def max_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            series = align_series_full_broadcast(
                df, *(s for _expr in exprs for s in _expr(df))
            )

            return [dd.concat(series, axis=1).max(axis=1)]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="max_horizontal",
            evaluate_output_names=combine_evaluate_output_names(*exprs),
            alias_output_names=combine_alias_output_names(*exprs),
            backend_version=self._backend_version,
            version=self._version,
        )

    def when(self, predicate: DaskExpr) -> DaskWhen:
        return DaskWhen.from_expr(predicate, context=self)

    def concat_str(
        self, *exprs: DaskExpr, separator: str, ignore_nulls: bool
    ) -> DaskExpr:
        def func(df: DaskLazyFrame) -> list[dx.Series]:
            expr_results = [s for _expr in exprs for s in _expr(df)]
            series = (
                s.astype(str) for s in align_series_full_broadcast(df, *expr_results)
            )
            null_mask = [s.isna() for s in align_series_full_broadcast(df, *expr_results)]

            if not ignore_nulls:
                null_mask_result = reduce(operator.or_, null_mask)
                result = reduce(lambda x, y: x + separator + y, series).where(
                    ~null_mask_result, None
                )
            else:
                init_value, *values = [
                    s.where(~nm, "") for s, nm in zip(series, null_mask)
                ]

                separators = (
                    nm.map({True: "", False: separator}, meta=str)
                    for nm in null_mask[:-1]
                )
                result = reduce(
                    operator.add, (s + v for s, v in zip(separators, values)), init_value
                )

            return [result]

        return self._expr(
            call=func,
            depth=max(x._depth for x in exprs) + 1,
            function_name="concat_str",
            evaluate_output_names=getattr(
                exprs[0], "_evaluate_output_names", lambda _df: ["literal"]
            ),
            alias_output_names=getattr(exprs[0], "_alias_output_names", None),
            backend_version=self._backend_version,
            version=self._version,
        )


class DaskWhen(CompliantWhen[DaskLazyFrame, "dx.Series", DaskExpr]):
    @property
    def _then(self) -> type[DaskThen]:
        return DaskThen

    def __call__(self, df: DaskLazyFrame) -> Sequence[dx.Series]:
        then_value = (
            self._then_value(df)[0]
            if isinstance(self._then_value, DaskExpr)
            else self._then_value
        )
        otherwise_value = (
            self._otherwise_value(df)[0]
            if isinstance(self._otherwise_value, DaskExpr)
            else self._otherwise_value
        )

        condition = self._condition(df)[0]
        # re-evaluate DataFrame if the condition aggregates to force
        #   then/otherwise to be evaluated against the aggregated frame
        assert self._condition._metadata is not None  # noqa: S101
        if self._condition._metadata.is_scalar_like:
            new_df = df._with_native(condition.to_frame())
            condition = self._condition.broadcast(ExprKind.AGGREGATION)(df)[0]
            df = new_df

        if self._otherwise_value is None:
            (condition, then_series) = align_series_full_broadcast(
                df, condition, then_value
            )
            validate_comparand(condition, then_series)
            return [then_series.where(condition)]  # pyright: ignore[reportArgumentType]
        (condition, then_series, otherwise_series) = align_series_full_broadcast(
            df, condition, then_value, otherwise_value
        )
        validate_comparand(condition, then_series)
        validate_comparand(condition, otherwise_series)
        return [then_series.where(condition, otherwise_series)]  # pyright: ignore[reportArgumentType]


class DaskThen(CompliantThen[DaskLazyFrame, "dx.Series", DaskExpr], DaskExpr): ...