1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
from __future__ import annotations
import contextlib
from functools import reduce
from operator import and_
from typing import TYPE_CHECKING, Any, Iterator, Mapping, Sequence
import duckdb
from duckdb import FunctionExpression, StarExpression
from narwhals._duckdb.utils import (
DeferredTimeZone,
col,
evaluate_exprs,
generate_partition_by_sql,
lit,
native_to_narwhals_dtype,
)
from narwhals._utils import (
Implementation,
Version,
generate_temporary_column_name,
not_implemented,
parse_columns_to_drop,
parse_version,
validate_backend_version,
)
from narwhals.dependencies import get_duckdb
from narwhals.exceptions import InvalidOperationError
from narwhals.typing import CompliantLazyFrame
if TYPE_CHECKING:
from types import ModuleType
import pandas as pd
import pyarrow as pa
from duckdb import Expression
from duckdb.typing import DuckDBPyType
from typing_extensions import Self, TypeIs
from narwhals._compliant.typing import CompliantDataFrameAny
from narwhals._duckdb.expr import DuckDBExpr
from narwhals._duckdb.group_by import DuckDBGroupBy
from narwhals._duckdb.namespace import DuckDBNamespace
from narwhals._duckdb.series import DuckDBInterchangeSeries
from narwhals._utils import _FullContext
from narwhals.dataframe import LazyFrame
from narwhals.dtypes import DType
from narwhals.stable.v1 import DataFrame as DataFrameV1
from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy
with contextlib.suppress(ImportError): # requires duckdb>=1.3.0
from duckdb import SQLExpression
class DuckDBLazyFrame(
CompliantLazyFrame[
"DuckDBExpr",
"duckdb.DuckDBPyRelation",
"LazyFrame[duckdb.DuckDBPyRelation] | DataFrameV1[duckdb.DuckDBPyRelation]",
]
):
_implementation = Implementation.DUCKDB
def __init__(
self,
df: duckdb.DuckDBPyRelation,
*,
backend_version: tuple[int, ...],
version: Version,
) -> None:
self._native_frame: duckdb.DuckDBPyRelation = df
self._version = version
self._backend_version = backend_version
self._cached_native_schema: dict[str, DuckDBPyType] | None = None
self._cached_columns: list[str] | None = None
validate_backend_version(self._implementation, self._backend_version)
@staticmethod
def _is_native(obj: duckdb.DuckDBPyRelation | Any) -> TypeIs[duckdb.DuckDBPyRelation]:
return isinstance(obj, duckdb.DuckDBPyRelation)
@classmethod
def from_native(
cls, data: duckdb.DuckDBPyRelation, /, *, context: _FullContext
) -> Self:
return cls(
data, backend_version=context._backend_version, version=context._version
)
def to_narwhals(
self, *args: Any, **kwds: Any
) -> LazyFrame[duckdb.DuckDBPyRelation] | DataFrameV1[duckdb.DuckDBPyRelation]:
if self._version is Version.MAIN:
return self._version.lazyframe(self, level="lazy")
from narwhals.stable.v1 import DataFrame as DataFrameV1
return DataFrameV1(self, level="interchange") # type: ignore[no-any-return]
def __narwhals_dataframe__(self) -> Self: # pragma: no cover
# Keep around for backcompat.
if self._version is not Version.V1:
msg = "__narwhals_dataframe__ is not implemented for DuckDBLazyFrame"
raise AttributeError(msg)
return self
def __narwhals_lazyframe__(self) -> Self:
return self
def __native_namespace__(self) -> ModuleType:
return get_duckdb() # type: ignore[no-any-return]
def __narwhals_namespace__(self) -> DuckDBNamespace:
from narwhals._duckdb.namespace import DuckDBNamespace
return DuckDBNamespace(
backend_version=self._backend_version, version=self._version
)
def get_column(self, name: str) -> DuckDBInterchangeSeries:
from narwhals._duckdb.series import DuckDBInterchangeSeries
return DuckDBInterchangeSeries(self.native.select(name), version=self._version)
def _iter_columns(self) -> Iterator[Expression]:
for name in self.columns:
yield col(name)
def collect(
self, backend: ModuleType | Implementation | str | None, **kwargs: Any
) -> CompliantDataFrameAny:
if backend is None or backend is Implementation.PYARROW:
import pyarrow as pa # ignore-banned-import
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
self.native.arrow(),
backend_version=parse_version(pa),
version=self._version,
validate_column_names=True,
)
if backend is Implementation.PANDAS:
import pandas as pd # ignore-banned-import
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
self.native.df(),
implementation=Implementation.PANDAS,
backend_version=parse_version(pd),
version=self._version,
validate_column_names=True,
)
if backend is Implementation.POLARS:
import polars as pl # ignore-banned-import
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
self.native.pl(), backend_version=parse_version(pl), version=self._version
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
def head(self, n: int) -> Self:
return self._with_native(self.native.limit(n))
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self.native.select(*column_names))
def aggregate(self, *exprs: DuckDBExpr) -> Self:
selection = [val.alias(name) for name, val in evaluate_exprs(self, *exprs)]
return self._with_native(self.native.aggregate(selection)) # type: ignore[arg-type]
def select(self, *exprs: DuckDBExpr) -> Self:
selection = (val.alias(name) for name, val in evaluate_exprs(self, *exprs))
return self._with_native(self.native.select(*selection))
def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
selection = (name for name in self.columns if name not in columns_to_drop)
return self._with_native(self.native.select(*selection))
def lazy(self, *, backend: Implementation | None = None) -> Self:
# The `backend`` argument has no effect but we keep it here for
# backwards compatibility because in `narwhals.stable.v1`
# function `.from_native()` will return a DataFrame for DuckDB.
if backend is not None: # pragma: no cover
msg = "`backend` argument is not supported for DuckDB"
raise ValueError(msg)
return self
def with_columns(self, *exprs: DuckDBExpr) -> Self:
new_columns_map = dict(evaluate_exprs(self, *exprs))
result = [
new_columns_map.pop(name).alias(name)
if name in new_columns_map
else col(name)
for name in self.columns
]
result.extend(value.alias(name) for name, value in new_columns_map.items())
return self._with_native(self.native.select(*result))
def filter(self, predicate: DuckDBExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
mask = predicate(self)[0]
return self._with_native(self.native.filter(mask))
@property
def schema(self) -> dict[str, DType]:
if self._cached_native_schema is None:
# Note: prefer `self._cached_native_schema` over `functools.cached_property`
# due to Python3.13 failures.
self._cached_native_schema = dict(zip(self.columns, self.native.types))
deferred_time_zone = DeferredTimeZone(self.native)
return {
column_name: native_to_narwhals_dtype(
duckdb_dtype, self._version, deferred_time_zone
)
for column_name, duckdb_dtype in zip(self.native.columns, self.native.types)
}
@property
def columns(self) -> list[str]:
if self._cached_columns is None:
self._cached_columns = (
list(self.schema)
if self._cached_native_schema is not None
else self.native.columns
)
return self._cached_columns
def to_pandas(self) -> pd.DataFrame:
# only if version is v1, keep around for backcompat
import pandas as pd # ignore-banned-import()
if parse_version(pd) >= (1, 0, 0):
return self.native.df()
else: # pragma: no cover
msg = f"Conversion to pandas requires 'pandas>=1.0.0', found {pd.__version__}"
raise NotImplementedError(msg)
def to_arrow(self) -> pa.Table:
# only if version is v1, keep around for backcompat
return self.native.arrow()
def _with_version(self, version: Version) -> Self:
return self.__class__(
self.native, version=version, backend_version=self._backend_version
)
def _with_native(self, df: duckdb.DuckDBPyRelation) -> Self:
return self.__class__(
df, backend_version=self._backend_version, version=self._version
)
def group_by(
self, keys: Sequence[str] | Sequence[DuckDBExpr], *, drop_null_keys: bool
) -> DuckDBGroupBy:
from narwhals._duckdb.group_by import DuckDBGroupBy
return DuckDBGroupBy(self, keys, drop_null_keys=drop_null_keys)
def rename(self, mapping: Mapping[str, str]) -> Self:
df = self.native
selection = (
col(name).alias(mapping[name]) if name in mapping else col(name)
for name in df.columns
)
return self._with_native(self.native.select(*selection))
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
native_how = "outer" if how == "full" else how
if native_how == "cross":
if self._backend_version < (1, 1, 4):
msg = f"'duckdb>=1.1.4' is required for cross-join, found version: {self._backend_version}"
raise NotImplementedError(msg)
rel = self.native.set_alias("lhs").cross(other.native.set_alias("rhs"))
else:
# help mypy
assert left_on is not None # noqa: S101
assert right_on is not None # noqa: S101
it = (
col(f'lhs."{left}"') == col(f'rhs."{right}"')
for left, right in zip(left_on, right_on)
)
condition: Expression = reduce(and_, it)
rel = self.native.set_alias("lhs").join(
other.native.set_alias("rhs"),
# NOTE: Fixed in `--pre` https://github.com/duckdb/duckdb/pull/16933
condition=condition, # type: ignore[arg-type, unused-ignore]
how=native_how,
)
if native_how in {"inner", "left", "cross", "outer"}:
select = [col(f'lhs."{x}"') for x in self.columns]
for name in other.columns:
col_in_lhs: bool = name in self.columns
if native_how == "outer" and not col_in_lhs:
select.append(col(f'rhs."{name}"'))
elif (native_how == "outer") or (
col_in_lhs and (right_on is None or name not in right_on)
):
select.append(col(f'rhs."{name}"').alias(f"{name}{suffix}"))
elif right_on is None or name not in right_on:
select.append(col(name))
res = rel.select(*select).set_alias(self.native.alias)
else: # semi, anti
res = rel.select("lhs.*").set_alias(self.native.alias)
return self._with_native(res)
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self:
lhs = self.native
rhs = other.native
conditions: list[Expression] = []
if by_left is not None and by_right is not None:
conditions.extend(
col(f'lhs."{left}"') == col(f'rhs."{right}"')
for left, right in zip(by_left, by_right)
)
else:
by_left = by_right = []
if strategy == "backward":
conditions.append(col(f'lhs."{left_on}"') >= col(f'rhs."{right_on}"'))
elif strategy == "forward":
conditions.append(col(f'lhs."{left_on}"') <= col(f'rhs."{right_on}"'))
else:
msg = "Only 'backward' and 'forward' strategies are currently supported for DuckDB"
raise NotImplementedError(msg)
condition: Expression = reduce(and_, conditions)
select = ["lhs.*"]
for name in rhs.columns:
if name in lhs.columns and (
right_on is None or name not in {right_on, *by_right}
):
select.append(f'rhs."{name}" as "{name}{suffix}"')
elif right_on is None or name not in {right_on, *by_right}:
select.append(str(col(name)))
# Replace with Python API call once
# https://github.com/duckdb/duckdb/discussions/16947 is addressed.
query = f"""
SELECT {",".join(select)}
FROM lhs
ASOF LEFT JOIN rhs
ON {condition}
""" # noqa: S608
return self._with_native(duckdb.sql(query))
def collect_schema(self) -> dict[str, DType]:
return self.schema
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self:
if subset_ := subset if keep == "any" else (subset or self.columns):
if self._backend_version < (1, 3):
msg = (
"At least version 1.3 of DuckDB is required for `unique` operation\n"
"with `subset` specified."
)
raise NotImplementedError(msg)
# Sanitise input
if error := self._check_columns_exist(subset_):
raise error
idx_name = generate_temporary_column_name(8, self.columns)
count_name = generate_temporary_column_name(8, [*self.columns, idx_name])
partition_by_sql = generate_partition_by_sql(*(subset_))
name = count_name if keep == "none" else idx_name
idx_expr = SQLExpression(
f"{FunctionExpression('row_number')} over ({partition_by_sql})"
).alias(idx_name)
count_expr = SQLExpression(
f"{FunctionExpression('count', StarExpression())} over ({partition_by_sql})"
).alias(count_name)
return self._with_native(
self.native.select(StarExpression(), idx_expr, count_expr)
.filter(col(name) == lit(1))
.select(StarExpression(exclude=[count_name, idx_name]))
)
return self._with_native(self.native.unique(", ".join(self.columns)))
def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
if isinstance(descending, bool):
descending = [descending] * len(by)
if nulls_last:
it = (
col(name).nulls_last() if not desc else col(name).desc().nulls_last()
for name, desc in zip(by, descending)
)
else:
it = (
col(name).nulls_first() if not desc else col(name).desc().nulls_first()
for name, desc in zip(by, descending)
)
return self._with_native(self.native.sort(*it))
def drop_nulls(self, subset: Sequence[str] | None) -> Self:
subset_ = subset if subset is not None else self.columns
keep_condition = reduce(and_, (col(name).isnotnull() for name in subset_))
return self._with_native(self.native.filter(keep_condition))
def explode(self, columns: Sequence[str]) -> Self:
dtypes = self._version.dtypes
schema = self.collect_schema()
for name in columns:
dtype = schema[name]
if dtype != dtypes.List:
msg = (
f"`explode` operation not supported for dtype `{dtype}`, "
"expected List type"
)
raise InvalidOperationError(msg)
if len(columns) != 1:
msg = (
"Exploding on multiple columns is not supported with DuckDB backend since "
"we cannot guarantee that the exploded columns have matching element counts."
)
raise NotImplementedError(msg)
col_to_explode = col(columns[0])
rel = self.native
original_columns = self.columns
not_null_condition = col_to_explode.isnotnull() & FunctionExpression(
"len", col_to_explode
) > lit(0)
non_null_rel = rel.filter(not_null_condition).select(
*(
FunctionExpression("unnest", col_to_explode).alias(name)
if name in columns
else name
for name in original_columns
)
)
null_rel = rel.filter(~not_null_condition).select(
*(
lit(None).alias(name) if name in columns else name
for name in original_columns
)
)
return self._with_native(non_null_rel.union(null_rel))
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
index_ = [] if index is None else index
on_ = [c for c in self.columns if c not in index_] if on is None else on
if variable_name == "":
msg = "`variable_name` cannot be empty string for duckdb backend."
raise NotImplementedError(msg)
if value_name == "":
msg = "`value_name` cannot be empty string for duckdb backend."
raise NotImplementedError(msg)
unpivot_on = ", ".join(str(col(name)) for name in on_)
rel = self.native # noqa: F841
# Replace with Python API once
# https://github.com/duckdb/duckdb/discussions/16980 is addressed.
query = f"""
unpivot rel
on {unpivot_on}
into
name "{variable_name}"
value "{value_name}"
"""
return self._with_native(
duckdb.sql(query).select(*[*index_, variable_name, value_name])
)
gather_every = not_implemented.deprecated(
"`LazyFrame.gather_every` is deprecated and will be removed in a future version."
)
tail = not_implemented.deprecated(
"`LazyFrame.tail` is deprecated and will be removed in a future version."
)
with_row_index = not_implemented()
|