1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Iterable,
Iterator,
Mapping,
Sequence,
cast,
overload,
)
import polars as pl
from narwhals._polars.utils import (
catch_polars_exception,
extract_args_kwargs,
extract_native,
narwhals_to_native_dtype,
native_to_narwhals_dtype,
)
from narwhals._utils import Implementation, requires, validate_backend_version
from narwhals.dependencies import is_numpy_array_1d
if TYPE_CHECKING:
from types import ModuleType
from typing import TypeVar
import pandas as pd
import pyarrow as pa
from typing_extensions import Self, TypeIs
from narwhals._polars.dataframe import Method, PolarsDataFrame
from narwhals._polars.expr import PolarsExpr
from narwhals._polars.namespace import PolarsNamespace
from narwhals._utils import Version, _FullContext
from narwhals.dtypes import DType
from narwhals.series import Series
from narwhals.typing import Into1DArray, IntoDType, MultiIndexSelector, _1DArray
T = TypeVar("T")
# Series methods where PolarsSeries just defers to Polars.Series directly.
INHERITED_METHODS = frozenset(
[
"__add__",
"__and__",
"__floordiv__",
"__invert__",
"__iter__",
"__mod__",
"__mul__",
"__or__",
"__pow__",
"__radd__",
"__rand__",
"__rfloordiv__",
"__rmod__",
"__rmul__",
"__ror__",
"__rsub__",
"__rtruediv__",
"__sub__",
"__truediv__",
"abs",
"all",
"any",
"arg_max",
"arg_min",
"arg_true",
"clip",
"count",
"cum_max",
"cum_min",
"cum_prod",
"cum_sum",
"diff",
"drop_nulls",
"exp",
"fill_null",
"filter",
"gather_every",
"head",
"is_between",
"is_finite",
"is_first_distinct",
"is_in",
"is_last_distinct",
"is_null",
"is_sorted",
"is_unique",
"item",
"len",
"log",
"max",
"mean",
"min",
"mode",
"n_unique",
"null_count",
"quantile",
"rank",
"round",
"sample",
"shift",
"skew",
"std",
"sum",
"tail",
"to_arrow",
"to_frame",
"to_list",
"to_pandas",
"unique",
"var",
"zip_with",
]
)
class PolarsSeries:
def __init__(
self, series: pl.Series, *, backend_version: tuple[int, ...], version: Version
) -> None:
self._native_series: pl.Series = series
self._backend_version = backend_version
self._implementation = Implementation.POLARS
self._version = version
validate_backend_version(self._implementation, self._backend_version)
def __repr__(self) -> str: # pragma: no cover
return "PolarsSeries"
def __narwhals_namespace__(self) -> PolarsNamespace:
from narwhals._polars.namespace import PolarsNamespace
return PolarsNamespace(
backend_version=self._backend_version, version=self._version
)
def __narwhals_series__(self) -> Self:
return self
def __native_namespace__(self) -> ModuleType:
if self._implementation is Implementation.POLARS:
return self._implementation.to_native_namespace()
msg = f"Expected polars, got: {type(self._implementation)}" # pragma: no cover
raise AssertionError(msg)
def _with_version(self, version: Version) -> Self:
return self.__class__(
self.native, backend_version=self._backend_version, version=version
)
@classmethod
def from_iterable(
cls,
data: Iterable[Any],
*,
context: _FullContext,
name: str = "",
dtype: IntoDType | None = None,
) -> Self:
version = context._version
backend_version = context._backend_version
dtype_pl = (
narwhals_to_native_dtype(dtype, version, backend_version) if dtype else None
)
# NOTE: `Iterable` is fine, annotation is overly narrow
# https://github.com/pola-rs/polars/blob/82d57a4ee41f87c11ca1b1af15488459727efdd7/py-polars/polars/series/series.py#L332-L333
native = pl.Series(name=name, values=cast("Sequence[Any]", data), dtype=dtype_pl)
return cls.from_native(native, context=context)
@staticmethod
def _is_native(obj: pl.Series | Any) -> TypeIs[pl.Series]:
return isinstance(obj, pl.Series)
@classmethod
def from_native(cls, data: pl.Series, /, *, context: _FullContext) -> Self:
return cls(
data, backend_version=context._backend_version, version=context._version
)
@classmethod
def from_numpy(cls, data: Into1DArray, /, *, context: _FullContext) -> Self:
native = pl.Series(data if is_numpy_array_1d(data) else [data])
return cls.from_native(native, context=context)
def to_narwhals(self) -> Series[pl.Series]:
return self._version.series(self, level="full")
def _with_native(self, series: pl.Series) -> Self:
return self.__class__(
series, backend_version=self._backend_version, version=self._version
)
@overload
def _from_native_object(self, series: pl.Series) -> Self: ...
@overload
def _from_native_object(self, series: pl.DataFrame) -> PolarsDataFrame: ...
@overload
def _from_native_object(self, series: T) -> T: ...
def _from_native_object(
self, series: pl.Series | pl.DataFrame | T
) -> Self | PolarsDataFrame | T:
if self._is_native(series):
return self._with_native(series)
if isinstance(series, pl.DataFrame):
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame.from_native(series, context=self)
# scalar
return series
def _to_expr(self) -> PolarsExpr:
return self.__narwhals_namespace__()._expr._from_series(self)
def __getattr__(self, attr: str) -> Any:
if attr not in INHERITED_METHODS:
msg = f"{self.__class__.__name__} has not attribute '{attr}'."
raise AttributeError(msg)
def func(*args: Any, **kwargs: Any) -> Any:
pos, kwds = extract_args_kwargs(args, kwargs)
return self._from_native_object(getattr(self.native, attr)(*pos, **kwds))
return func
def __len__(self) -> int:
return len(self.native)
@property
def name(self) -> str:
return self.native.name
@property
def dtype(self) -> DType:
return native_to_narwhals_dtype(
self.native.dtype, self._version, self._backend_version
)
@property
def native(self) -> pl.Series:
return self._native_series
def alias(self, name: str) -> Self:
return self._from_native_object(self.native.alias(name))
def __getitem__(self, item: MultiIndexSelector[Self]) -> Any | Self:
if isinstance(item, PolarsSeries):
return self._from_native_object(self.native.__getitem__(item.native))
return self._from_native_object(self.native.__getitem__(item))
def cast(self, dtype: IntoDType) -> Self:
dtype_pl = narwhals_to_native_dtype(dtype, self._version, self._backend_version)
return self._with_native(self.native.cast(dtype_pl))
@requires.backend_version((1,))
def replace_strict(
self,
old: Sequence[Any] | Mapping[Any, Any],
new: Sequence[Any],
*,
return_dtype: IntoDType | None,
) -> Self:
ser = self.native
dtype = (
narwhals_to_native_dtype(return_dtype, self._version, self._backend_version)
if return_dtype
else None
)
return self._with_native(ser.replace_strict(old, new, return_dtype=dtype))
def to_numpy(self, dtype: Any = None, *, copy: bool | None = None) -> _1DArray:
return self.__array__(dtype, copy=copy)
def __array__(self, dtype: Any, *, copy: bool | None) -> _1DArray:
if self._backend_version < (0, 20, 29):
return self.native.__array__(dtype=dtype)
return self.native.__array__(dtype=dtype, copy=copy)
def __eq__(self, other: object) -> Self: # type: ignore[override]
return self._with_native(self.native.__eq__(extract_native(other)))
def __ne__(self, other: object) -> Self: # type: ignore[override]
return self._with_native(self.native.__ne__(extract_native(other)))
# NOTE: `pyright` is being reasonable here
def __ge__(self, other: Any) -> Self:
return self._with_native(self.native.__ge__(extract_native(other))) # pyright: ignore[reportArgumentType]
def __gt__(self, other: Any) -> Self:
return self._with_native(self.native.__gt__(extract_native(other))) # pyright: ignore[reportArgumentType]
def __le__(self, other: Any) -> Self:
return self._with_native(self.native.__le__(extract_native(other))) # pyright: ignore[reportArgumentType]
def __lt__(self, other: Any) -> Self:
return self._with_native(self.native.__lt__(extract_native(other))) # pyright: ignore[reportArgumentType]
def __rpow__(self, other: PolarsSeries | Any) -> Self:
result = self.native.__rpow__(extract_native(other))
if self._backend_version < (1, 16, 1):
# Explicitly set alias to work around https://github.com/pola-rs/polars/issues/20071
result = result.alias(self.name)
return self._with_native(result)
def is_nan(self) -> Self:
try:
native_is_nan = self.native.is_nan()
except Exception as e: # noqa: BLE001
raise catch_polars_exception(e, self._backend_version) from None
if self._backend_version < (1, 18): # pragma: no cover
select = pl.when(self.native.is_not_null()).then(native_is_nan)
return self._with_native(pl.select(select)[self.name])
return self._with_native(native_is_nan)
def median(self) -> Any:
from narwhals.exceptions import InvalidOperationError
if not self.dtype.is_numeric():
msg = "`median` operation not supported for non-numeric input type."
raise InvalidOperationError(msg)
return self.native.median()
def to_dummies(self, *, separator: str, drop_first: bool) -> PolarsDataFrame:
from narwhals._polars.dataframe import PolarsDataFrame
if self._backend_version < (0, 20, 15):
has_nulls = self.native.is_null().any()
result = self.native.to_dummies(separator=separator)
output_columns = result.columns
if drop_first:
_ = output_columns.pop(int(has_nulls))
result = result.select(output_columns)
else:
result = self.native.to_dummies(separator=separator, drop_first=drop_first)
result = result.with_columns(pl.all().cast(pl.Int8))
return PolarsDataFrame.from_native(result, context=self)
def ewm_mean(
self,
*,
com: float | None,
span: float | None,
half_life: float | None,
alpha: float | None,
adjust: bool,
min_samples: int,
ignore_nulls: bool,
) -> Self:
extra_kwargs = (
{"min_periods": min_samples}
if self._backend_version < (1, 21, 0)
else {"min_samples": min_samples}
)
native_result = self.native.ewm_mean(
com=com,
span=span,
half_life=half_life,
alpha=alpha,
adjust=adjust,
ignore_nulls=ignore_nulls,
**extra_kwargs,
)
if self._backend_version < (1,): # pragma: no cover
return self._with_native(
pl.select(
pl.when(~self.native.is_null()).then(native_result).otherwise(None)
)[self.native.name]
)
return self._with_native(native_result)
@requires.backend_version((1,))
def rolling_var(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
extra_kwargs: dict[str, Any] = (
{"min_periods": min_samples}
if self._backend_version < (1, 21, 0)
else {"min_samples": min_samples}
)
return self._with_native(
self.native.rolling_var(
window_size=window_size, center=center, ddof=ddof, **extra_kwargs
)
)
@requires.backend_version((1,))
def rolling_std(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
extra_kwargs: dict[str, Any] = (
{"min_periods": min_samples}
if self._backend_version < (1, 21, 0)
else {"min_samples": min_samples}
)
return self._with_native(
self.native.rolling_std(
window_size=window_size, center=center, ddof=ddof, **extra_kwargs
)
)
def rolling_sum(self, window_size: int, *, min_samples: int, center: bool) -> Self:
extra_kwargs: dict[str, Any] = (
{"min_periods": min_samples}
if self._backend_version < (1, 21, 0)
else {"min_samples": min_samples}
)
return self._with_native(
self.native.rolling_sum(
window_size=window_size, center=center, **extra_kwargs
)
)
def rolling_mean(self, window_size: int, *, min_samples: int, center: bool) -> Self:
extra_kwargs: dict[str, Any] = (
{"min_periods": min_samples}
if self._backend_version < (1, 21, 0)
else {"min_samples": min_samples}
)
return self._with_native(
self.native.rolling_mean(
window_size=window_size, center=center, **extra_kwargs
)
)
def sort(self, *, descending: bool, nulls_last: bool) -> Self:
if self._backend_version < (0, 20, 6):
result = self.native.sort(descending=descending)
if nulls_last:
is_null = result.is_null()
result = pl.concat([result.filter(~is_null), result.filter(is_null)])
else:
result = self.native.sort(descending=descending, nulls_last=nulls_last)
return self._with_native(result)
def scatter(self, indices: int | Sequence[int], values: Any) -> Self:
s = self.native.clone().scatter(indices, extract_native(values))
return self._with_native(s)
def value_counts(
self, *, sort: bool, parallel: bool, name: str | None, normalize: bool
) -> PolarsDataFrame:
from narwhals._polars.dataframe import PolarsDataFrame
if self._backend_version < (1, 0, 0):
value_name_ = name or ("proportion" if normalize else "count")
result = self.native.value_counts(sort=sort, parallel=parallel).select(
**{
(self.native.name): pl.col(self.native.name),
value_name_: pl.col("count") / pl.sum("count")
if normalize
else pl.col("count"),
}
)
else:
result = self.native.value_counts(
sort=sort, parallel=parallel, name=name, normalize=normalize
)
return PolarsDataFrame.from_native(result, context=self)
def cum_count(self, *, reverse: bool) -> Self:
if self._backend_version < (0, 20, 4):
not_null_series = ~self.native.is_null()
result = not_null_series.cum_sum(reverse=reverse)
else:
result = self.native.cum_count(reverse=reverse)
return self._with_native(result)
def __contains__(self, other: Any) -> bool:
try:
return self.native.__contains__(other)
except Exception as e: # noqa: BLE001
raise catch_polars_exception(e, self._backend_version) from None
def hist( # noqa: C901, PLR0912
self,
bins: list[float | int] | None,
*,
bin_count: int | None,
include_breakpoint: bool,
) -> PolarsDataFrame:
from narwhals._polars.dataframe import PolarsDataFrame
if (bins is not None and len(bins) <= 1) or (bin_count == 0): # pragma: no cover
data: list[pl.Series] = []
if include_breakpoint:
data.append(pl.Series("breakpoint", [], dtype=pl.Float64))
data.append(pl.Series("count", [], dtype=pl.UInt32))
return PolarsDataFrame.from_native(pl.DataFrame(data), context=self)
if self.native.count() < 1:
data_dict: dict[str, Sequence[Any] | pl.Series]
if bins is not None:
data_dict = {
"breakpoint": bins[1:],
"count": pl.zeros(n=len(bins) - 1, dtype=pl.Int64, eager=True),
}
elif (bin_count is not None) and bin_count == 1:
data_dict = {"breakpoint": [1.0], "count": [0]}
elif (bin_count is not None) and bin_count > 1:
data_dict = {
"breakpoint": pl.int_range(1, bin_count + 1, eager=True) / bin_count,
"count": pl.zeros(n=bin_count, dtype=pl.Int64, eager=True),
}
else: # pragma: no cover
msg = (
"congratulations, you entered unreachable code - please report a bug"
)
raise AssertionError(msg)
if not include_breakpoint:
del data_dict["breakpoint"]
return PolarsDataFrame.from_native(pl.DataFrame(data_dict), context=self)
# polars <1.15 does not adjust the bins when they have equivalent min/max
# polars <1.5 with bin_count=...
# returns bins that range from -inf to +inf and has bin_count + 1 bins.
# for compat: convert `bin_count=` call to `bins=`
if (self._backend_version < (1, 15)) and (
bin_count is not None
): # pragma: no cover
lower = cast("float", self.native.min())
upper = cast("float", self.native.max())
if lower == upper:
width = 1 / bin_count
lower -= 0.5
upper += 0.5
else:
width = (upper - lower) / bin_count
bins = (pl.int_range(0, bin_count + 1, eager=True) * width + lower).to_list()
bin_count = None
# Polars inconsistently handles NaN values when computing histograms
# against predefined bins: https://github.com/pola-rs/polars/issues/21082
series = self.native
if self._backend_version < (1, 15) or bins is not None:
series = series.set(series.is_nan(), None)
df = series.hist(
bins,
bin_count=bin_count,
include_category=False,
include_breakpoint=include_breakpoint,
)
if not include_breakpoint:
df.columns = ["count"]
if self._backend_version < (1, 0) and include_breakpoint:
df = df.rename({"break_point": "breakpoint"})
# polars<1.15 implicitly adds -inf and inf to either end of bins
if self._backend_version < (1, 15) and bins is not None: # pragma: no cover
r = pl.int_range(0, len(df))
df = df.filter((r > 0) & (r < len(df) - 1))
# polars<1.27 makes the lowest bin a left/right closed interval.
if self._backend_version < (1, 27) and bins is not None:
df[0, "count"] += (series == bins[0]).sum()
return PolarsDataFrame.from_native(df, context=self)
def to_polars(self) -> pl.Series:
return self.native
@property
def dt(self) -> PolarsSeriesDateTimeNamespace:
return PolarsSeriesDateTimeNamespace(self)
@property
def str(self) -> PolarsSeriesStringNamespace:
return PolarsSeriesStringNamespace(self)
@property
def cat(self) -> PolarsSeriesCatNamespace:
return PolarsSeriesCatNamespace(self)
@property
def struct(self) -> PolarsSeriesStructNamespace:
return PolarsSeriesStructNamespace(self)
__add__: Method[Self]
__and__: Method[Self]
__floordiv__: Method[Self]
__invert__: Method[Self]
__iter__: Method[Iterator[Any]]
__mod__: Method[Self]
__mul__: Method[Self]
__or__: Method[Self]
__pow__: Method[Self]
__radd__: Method[Self]
__rand__: Method[Self]
__rfloordiv__: Method[Self]
__rmod__: Method[Self]
__rmul__: Method[Self]
__ror__: Method[Self]
__rsub__: Method[Self]
__rtruediv__: Method[Self]
__sub__: Method[Self]
__truediv__: Method[Self]
abs: Method[Self]
all: Method[bool]
any: Method[bool]
arg_max: Method[int]
arg_min: Method[int]
arg_true: Method[Self]
clip: Method[Self]
count: Method[int]
cum_max: Method[Self]
cum_min: Method[Self]
cum_prod: Method[Self]
cum_sum: Method[Self]
diff: Method[Self]
drop_nulls: Method[Self]
exp: Method[Self]
fill_null: Method[Self]
filter: Method[Self]
gather_every: Method[Self]
head: Method[Self]
is_between: Method[Self]
is_finite: Method[Self]
is_first_distinct: Method[Self]
is_in: Method[Self]
is_last_distinct: Method[Self]
is_null: Method[Self]
is_sorted: Method[bool]
is_unique: Method[Self]
item: Method[Any]
len: Method[int]
log: Method[Self]
max: Method[Any]
mean: Method[float]
min: Method[Any]
mode: Method[Self]
n_unique: Method[int]
null_count: Method[int]
quantile: Method[float]
rank: Method[Self]
round: Method[Self]
sample: Method[Self]
shift: Method[Self]
skew: Method[float | None]
std: Method[float]
sum: Method[float]
tail: Method[Self]
to_arrow: Method[pa.Array[Any]]
to_frame: Method[PolarsDataFrame]
to_list: Method[list[Any]]
to_pandas: Method[pd.Series[Any]]
unique: Method[Self]
var: Method[float]
zip_with: Method[Self]
@property
def list(self) -> PolarsSeriesListNamespace:
return PolarsSeriesListNamespace(self)
class PolarsSeriesDateTimeNamespace:
def __init__(self, series: PolarsSeries) -> None:
self._compliant_series = series
def __getattr__(self, attr: str) -> Any:
def func(*args: Any, **kwargs: Any) -> Any:
pos, kwds = extract_args_kwargs(args, kwargs)
return self._compliant_series._with_native(
getattr(self._compliant_series.native.dt, attr)(*pos, **kwds)
)
return func
class PolarsSeriesStringNamespace:
def __init__(self, series: PolarsSeries) -> None:
self._compliant_series = series
def __getattr__(self, attr: str) -> Any:
def func(*args: Any, **kwargs: Any) -> Any:
pos, kwds = extract_args_kwargs(args, kwargs)
return self._compliant_series._with_native(
getattr(self._compliant_series.native.str, attr)(*pos, **kwds)
)
return func
class PolarsSeriesCatNamespace:
def __init__(self, series: PolarsSeries) -> None:
self._compliant_series = series
def __getattr__(self, attr: str) -> Any:
def func(*args: Any, **kwargs: Any) -> Any:
pos, kwds = extract_args_kwargs(args, kwargs)
return self._compliant_series._with_native(
getattr(self._compliant_series.native.cat, attr)(*pos, **kwds)
)
return func
class PolarsSeriesListNamespace:
def __init__(self, series: PolarsSeries) -> None:
self._series = series
def len(self) -> PolarsSeries:
native_series = self._series.native
native_result = native_series.list.len()
if self._series._backend_version < (1, 16): # pragma: no cover
native_result = pl.select(
pl.when(~native_series.is_null()).then(native_result).otherwise(None)
)[native_series.name].cast(pl.UInt32())
elif self._series._backend_version < (1, 17): # pragma: no cover
native_result = native_series.cast(pl.UInt32())
return self._series._with_native(native_result)
# TODO(FBruzzesi): Remove `pragma: no cover` once other namespace methods are added
def __getattr__(self, attr: str) -> Any: # pragma: no cover
def func(*args: Any, **kwargs: Any) -> Any:
pos, kwds = extract_args_kwargs(args, kwargs)
return self._series._with_native(
getattr(self._series.native.list, attr)(*pos, **kwds)
)
return func
class PolarsSeriesStructNamespace:
def __init__(self, series: PolarsSeries) -> None:
self._compliant_series = series
def __getattr__(self, attr: str) -> Any:
def func(*args: Any, **kwargs: Any) -> Any:
pos, kwds = extract_args_kwargs(args, kwargs)
return self._compliant_series._with_native(
getattr(self._compliant_series.native.struct, attr)(*pos, **kwds)
)
return func
|