aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/narwhals/_utils.py
blob: 3d2c89aef2b2720adf5ed335b45afd822ddb0802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
from __future__ import annotations

import os
import re
from datetime import timezone
from enum import Enum, auto
from functools import wraps
from importlib.util import find_spec
from inspect import getattr_static, getdoc
from secrets import token_hex
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Container,
    Generic,
    Iterable,
    Iterator,
    Literal,
    Protocol,
    Sequence,
    TypeVar,
    Union,
    cast,
    overload,
)
from warnings import warn

from narwhals._enum import NoAutoEnum
from narwhals._typing_compat import deprecated
from narwhals.dependencies import (
    get_cudf,
    get_dask,
    get_dask_dataframe,
    get_duckdb,
    get_ibis,
    get_modin,
    get_pandas,
    get_polars,
    get_pyarrow,
    get_pyspark,
    get_pyspark_connect,
    get_pyspark_sql,
    get_sqlframe,
    is_narwhals_series,
    is_narwhals_series_int,
    is_numpy_array_1d,
    is_numpy_array_1d_int,
    is_pandas_dataframe,
    is_pandas_like_dataframe,
    is_pandas_like_series,
    is_pandas_series,
    is_polars_series,
    is_pyarrow_chunked_array,
)
from narwhals.exceptions import ColumnNotFoundError, DuplicateError, InvalidOperationError

if TYPE_CHECKING:
    from types import ModuleType
    from typing import AbstractSet as Set

    import pandas as pd
    import polars as pl
    import pyarrow as pa
    from typing_extensions import (
        Concatenate,
        LiteralString,
        ParamSpec,
        Self,
        TypeAlias,
        TypeIs,
    )

    from narwhals._compliant import (
        CompliantExpr,
        CompliantExprT,
        CompliantFrameT,
        CompliantSeriesOrNativeExprT_co,
        CompliantSeriesT,
        NativeFrameT_co,
        NativeSeriesT_co,
    )
    from narwhals._compliant.typing import EvalNames
    from narwhals._namespace import EagerAllowedImplementation, Namespace
    from narwhals._translate import ArrowStreamExportable, IntoArrowTable, ToNarwhalsT_co
    from narwhals.dataframe import DataFrame, LazyFrame
    from narwhals.dtypes import DType
    from narwhals.series import Series
    from narwhals.typing import (
        CompliantDataFrame,
        CompliantLazyFrame,
        CompliantSeries,
        DataFrameLike,
        DTypes,
        IntoSeriesT,
        MultiIndexSelector,
        SingleIndexSelector,
        SizedMultiIndexSelector,
        SizeUnit,
        SupportsNativeNamespace,
        TimeUnit,
        _1DArray,
        _SliceIndex,
        _SliceName,
        _SliceNone,
    )

    FrameOrSeriesT = TypeVar(
        "FrameOrSeriesT", bound=Union[LazyFrame[Any], DataFrame[Any], Series[Any]]
    )

    _T1 = TypeVar("_T1")
    _T2 = TypeVar("_T2")
    _T3 = TypeVar("_T3")
    _Fn = TypeVar("_Fn", bound="Callable[..., Any]")
    P = ParamSpec("P")
    R = TypeVar("R")
    R1 = TypeVar("R1")
    R2 = TypeVar("R2")

    class _SupportsVersion(Protocol):
        __version__: str

    class _SupportsGet(Protocol):  # noqa: PYI046
        def __get__(self, instance: Any, owner: Any | None = None, /) -> Any: ...

    class _StoresImplementation(Protocol):
        _implementation: Implementation
        """Implementation of native object (pandas, Polars, PyArrow, ...)."""

    class _StoresBackendVersion(Protocol):
        _backend_version: tuple[int, ...]
        """Version tuple for a native package."""

    class _StoresVersion(Protocol):
        _version: Version
        """Narwhals API version (V1 or MAIN)."""

    class _LimitedContext(_StoresBackendVersion, _StoresVersion, Protocol):
        """Provides 2 attributes.

        - `_backend_version`
        - `_version`
        """

    class _FullContext(_StoresImplementation, _LimitedContext, Protocol):
        """Provides 3 attributes.

        - `_implementation`
        - `_backend_version`
        - `_version`
        """

    class _StoresColumns(Protocol):
        @property
        def columns(self) -> Sequence[str]: ...


_T = TypeVar("_T")
NativeT_co = TypeVar("NativeT_co", covariant=True)
CompliantT_co = TypeVar("CompliantT_co", covariant=True)
_ContextT = TypeVar("_ContextT", bound="_FullContext")
_Method: TypeAlias = "Callable[Concatenate[_ContextT, P], R]"
_Constructor: TypeAlias = "Callable[Concatenate[_T, P], R2]"


class _StoresNative(Protocol[NativeT_co]):  # noqa: PYI046
    """Provides access to a native object.

    Native objects have types like:

    >>> from pandas import Series
    >>> from pyarrow import Table
    """

    @property
    def native(self) -> NativeT_co:
        """Return the native object."""
        ...


class _StoresCompliant(Protocol[CompliantT_co]):  # noqa: PYI046
    """Provides access to a compliant object.

    Compliant objects have types like:

    >>> from narwhals._pandas_like.series import PandasLikeSeries
    >>> from narwhals._arrow.dataframe import ArrowDataFrame
    """

    @property
    def compliant(self) -> CompliantT_co:
        """Return the compliant object."""
        ...


class Version(Enum):
    V1 = auto()
    MAIN = auto()

    @property
    def namespace(self) -> type[Namespace[Any]]:
        if self is Version.MAIN:
            from narwhals._namespace import Namespace

            return Namespace
        from narwhals.stable.v1._namespace import Namespace

        return Namespace

    @property
    def dtypes(self) -> DTypes:
        if self is Version.MAIN:
            from narwhals import dtypes

            return dtypes
        from narwhals.stable.v1 import dtypes as v1_dtypes

        return v1_dtypes

    @property
    def dataframe(self) -> type[DataFrame[Any]]:
        if self is Version.MAIN:
            from narwhals.dataframe import DataFrame

            return DataFrame
        from narwhals.stable.v1 import DataFrame as DataFrameV1

        return DataFrameV1

    @property
    def lazyframe(self) -> type[LazyFrame[Any]]:
        if self is Version.MAIN:
            from narwhals.dataframe import LazyFrame

            return LazyFrame
        from narwhals.stable.v1 import LazyFrame as LazyFrameV1

        return LazyFrameV1

    @property
    def series(self) -> type[Series[Any]]:
        if self is Version.MAIN:
            from narwhals.series import Series

            return Series
        from narwhals.stable.v1 import Series as SeriesV1

        return SeriesV1


class Implementation(NoAutoEnum):
    """Implementation of native object (pandas, Polars, PyArrow, ...)."""

    PANDAS = "pandas"
    """pandas implementation."""
    MODIN = "modin"
    """Modin implementation."""
    CUDF = "cudf"
    """cuDF implementation."""
    PYARROW = "pyarrow"
    """PyArrow implementation."""
    PYSPARK = "pyspark"
    """PySpark implementation."""
    POLARS = "polars"
    """Polars implementation."""
    DASK = "dask"
    """Dask implementation."""
    DUCKDB = "duckdb"
    """DuckDB implementation."""
    IBIS = "ibis"
    """Ibis implementation."""
    SQLFRAME = "sqlframe"
    """SQLFrame implementation."""
    PYSPARK_CONNECT = "pyspark[connect]"
    """PySpark Connect implementation."""
    UNKNOWN = "unknown"
    """Unknown implementation."""

    def __str__(self) -> str:
        return str(self.value)

    @classmethod
    def from_native_namespace(
        cls: type[Self], native_namespace: ModuleType
    ) -> Implementation:  # pragma: no cover
        """Instantiate Implementation object from a native namespace module.

        Arguments:
            native_namespace: Native namespace.

        Returns:
            Implementation.
        """
        mapping = {
            get_pandas(): Implementation.PANDAS,
            get_modin(): Implementation.MODIN,
            get_cudf(): Implementation.CUDF,
            get_pyarrow(): Implementation.PYARROW,
            get_pyspark_sql(): Implementation.PYSPARK,
            get_polars(): Implementation.POLARS,
            get_dask_dataframe(): Implementation.DASK,
            get_duckdb(): Implementation.DUCKDB,
            get_ibis(): Implementation.IBIS,
            get_sqlframe(): Implementation.SQLFRAME,
            get_pyspark_connect(): Implementation.PYSPARK_CONNECT,
        }
        return mapping.get(native_namespace, Implementation.UNKNOWN)

    @classmethod
    def from_string(
        cls: type[Self], backend_name: str
    ) -> Implementation:  # pragma: no cover
        """Instantiate Implementation object from a native namespace module.

        Arguments:
            backend_name: Name of backend, expressed as string.

        Returns:
            Implementation.
        """
        try:
            return cls(backend_name)
        except ValueError:
            return Implementation.UNKNOWN

    @classmethod
    def from_backend(
        cls: type[Self], backend: str | Implementation | ModuleType
    ) -> Implementation:
        """Instantiate from native namespace module, string, or Implementation.

        Arguments:
            backend: Backend to instantiate Implementation from.

        Returns:
            Implementation.
        """
        return (
            cls.from_string(backend)
            if isinstance(backend, str)
            else backend
            if isinstance(backend, Implementation)
            else cls.from_native_namespace(backend)
        )

    def to_native_namespace(self) -> ModuleType:  # noqa: C901, PLR0911
        """Return the native namespace module corresponding to Implementation.

        Returns:
            Native module.
        """
        if self is Implementation.PANDAS:
            import pandas as pd  # ignore-banned-import

            return pd
        if self is Implementation.MODIN:
            import modin.pandas

            return modin.pandas
        if self is Implementation.CUDF:  # pragma: no cover
            import cudf  # ignore-banned-import

            return cudf
        if self is Implementation.PYARROW:
            import pyarrow as pa  # ignore-banned-import

            return pa
        if self is Implementation.PYSPARK:  # pragma: no cover
            import pyspark.sql

            return pyspark.sql
        if self is Implementation.POLARS:
            import polars as pl  # ignore-banned-import

            return pl
        if self is Implementation.DASK:
            import dask.dataframe  # ignore-banned-import

            return dask.dataframe

        if self is Implementation.DUCKDB:
            import duckdb  # ignore-banned-import

            return duckdb

        if self is Implementation.SQLFRAME:
            import sqlframe  # ignore-banned-import

            return sqlframe

        if self is Implementation.IBIS:
            import ibis  # ignore-banned-import

            return ibis

        if self is Implementation.PYSPARK_CONNECT:  # pragma: no cover
            import pyspark.sql.connect  # ignore-banned-import

            return pyspark.sql.connect

        msg = "Not supported Implementation"  # pragma: no cover
        raise AssertionError(msg)

    def is_pandas(self) -> bool:
        """Return whether implementation is pandas.

        Returns:
            Boolean.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pandas()
            True
        """
        return self is Implementation.PANDAS

    def is_pandas_like(self) -> bool:
        """Return whether implementation is pandas, Modin, or cuDF.

        Returns:
            Boolean.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pandas_like()
            True
        """
        return self in {Implementation.PANDAS, Implementation.MODIN, Implementation.CUDF}

    def is_spark_like(self) -> bool:
        """Return whether implementation is pyspark or sqlframe.

        Returns:
            Boolean.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_spark_like()
            False
        """
        return self in {
            Implementation.PYSPARK,
            Implementation.SQLFRAME,
            Implementation.PYSPARK_CONNECT,
        }

    def is_polars(self) -> bool:
        """Return whether implementation is Polars.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_polars()
            True
        """
        return self is Implementation.POLARS

    def is_cudf(self) -> bool:
        """Return whether implementation is cuDF.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_cudf()
            False
        """
        return self is Implementation.CUDF  # pragma: no cover

    def is_modin(self) -> bool:
        """Return whether implementation is Modin.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_modin()
            False
        """
        return self is Implementation.MODIN  # pragma: no cover

    def is_pyspark(self) -> bool:
        """Return whether implementation is PySpark.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pyspark()
            False
        """
        return self is Implementation.PYSPARK  # pragma: no cover

    def is_pyspark_connect(self) -> bool:
        """Return whether implementation is PySpark.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pyspark_connect()
            False
        """
        return self is Implementation.PYSPARK_CONNECT  # pragma: no cover

    def is_pyarrow(self) -> bool:
        """Return whether implementation is PyArrow.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pyarrow()
            False
        """
        return self is Implementation.PYARROW  # pragma: no cover

    def is_dask(self) -> bool:
        """Return whether implementation is Dask.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_dask()
            False
        """
        return self is Implementation.DASK  # pragma: no cover

    def is_duckdb(self) -> bool:
        """Return whether implementation is DuckDB.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_duckdb()
            False
        """
        return self is Implementation.DUCKDB  # pragma: no cover

    def is_ibis(self) -> bool:
        """Return whether implementation is Ibis.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_ibis()
            False
        """
        return self is Implementation.IBIS  # pragma: no cover

    def is_sqlframe(self) -> bool:
        """Return whether implementation is SQLFrame.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_sqlframe()
            False
        """
        return self is Implementation.SQLFRAME  # pragma: no cover

    def _backend_version(self) -> tuple[int, ...]:
        native = self.to_native_namespace()
        into_version: Any
        if self not in {
            Implementation.PYSPARK,
            Implementation.PYSPARK_CONNECT,
            Implementation.DASK,
            Implementation.SQLFRAME,
        }:
            into_version = native
        elif self in {Implementation.PYSPARK, Implementation.PYSPARK_CONNECT}:
            into_version = get_pyspark()  # pragma: no cover
        elif self is Implementation.DASK:
            into_version = get_dask()
        else:
            import sqlframe._version

            into_version = sqlframe._version
        return parse_version(into_version)


MIN_VERSIONS: dict[Implementation, tuple[int, ...]] = {
    Implementation.PANDAS: (0, 25, 3),
    Implementation.MODIN: (0, 25, 3),
    Implementation.CUDF: (24, 10),
    Implementation.PYARROW: (11,),
    Implementation.PYSPARK: (3, 5),
    Implementation.PYSPARK_CONNECT: (3, 5),
    Implementation.POLARS: (0, 20, 3),
    Implementation.DASK: (2024, 8),
    Implementation.DUCKDB: (1,),
    Implementation.IBIS: (6,),
    Implementation.SQLFRAME: (3, 22, 0),
}


def validate_backend_version(
    implementation: Implementation, backend_version: tuple[int, ...]
) -> None:
    if backend_version < (min_version := MIN_VERSIONS[implementation]):
        msg = f"Minimum version of {implementation} supported by Narwhals is {min_version}, found: {backend_version}"
        raise ValueError(msg)


def remove_prefix(text: str, prefix: str) -> str:  # pragma: no cover
    if text.startswith(prefix):
        return text[len(prefix) :]
    return text


def remove_suffix(text: str, suffix: str) -> str:  # pragma: no cover
    if text.endswith(suffix):
        return text[: -len(suffix)]
    return text  # pragma: no cover


def flatten(args: Any) -> list[Any]:
    return list(args[0] if (len(args) == 1 and _is_iterable(args[0])) else args)


def tupleify(arg: Any) -> Any:
    if not isinstance(arg, (list, tuple)):  # pragma: no cover
        return (arg,)
    return arg


def _is_iterable(arg: Any | Iterable[Any]) -> bool:
    from narwhals.series import Series

    if is_pandas_dataframe(arg) or is_pandas_series(arg):
        msg = f"Expected Narwhals class or scalar, got: {qualified_type_name(arg)!r}. Perhaps you forgot a `nw.from_native` somewhere?"
        raise TypeError(msg)
    if (pl := get_polars()) is not None and isinstance(
        arg, (pl.Series, pl.Expr, pl.DataFrame, pl.LazyFrame)
    ):
        msg = (
            f"Expected Narwhals class or scalar, got: {qualified_type_name(arg)!r}.\n\n"
            "Hint: Perhaps you\n"
            "- forgot a `nw.from_native` somewhere?\n"
            "- used `pl.col` instead of `nw.col`?"
        )
        raise TypeError(msg)

    return isinstance(arg, Iterable) and not isinstance(arg, (str, bytes, Series))


def parse_version(version: str | ModuleType | _SupportsVersion) -> tuple[int, ...]:
    """Simple version parser; split into a tuple of ints for comparison.

    Arguments:
        version: Version string, or object with one, to parse.

    Returns:
        Parsed version number.
    """
    # lifted from Polars
    # [marco]: Take care of DuckDB pre-releases which end with e.g. `-dev4108`
    # and pandas pre-releases which end with e.g. .dev0+618.gb552dc95c9
    version_str = version if isinstance(version, str) else version.__version__
    version_str = re.sub(r"(\D?dev.*$)", "", version_str)
    return tuple(int(re.sub(r"\D", "", v)) for v in version_str.split("."))


@overload
def isinstance_or_issubclass(
    obj_or_cls: type, cls_or_tuple: type[_T]
) -> TypeIs[type[_T]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: object | type, cls_or_tuple: type[_T]
) -> TypeIs[_T | type[_T]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: type, cls_or_tuple: tuple[type[_T1], type[_T2]]
) -> TypeIs[type[_T1 | _T2]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: object | type, cls_or_tuple: tuple[type[_T1], type[_T2]]
) -> TypeIs[_T1 | _T2 | type[_T1 | _T2]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: type, cls_or_tuple: tuple[type[_T1], type[_T2], type[_T3]]
) -> TypeIs[type[_T1 | _T2 | _T3]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: object | type, cls_or_tuple: tuple[type[_T1], type[_T2], type[_T3]]
) -> TypeIs[_T1 | _T2 | _T3 | type[_T1 | _T2 | _T3]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: Any, cls_or_tuple: tuple[type, ...]
) -> TypeIs[Any]: ...


def isinstance_or_issubclass(obj_or_cls: Any, cls_or_tuple: Any) -> bool:
    from narwhals.dtypes import DType

    if isinstance(obj_or_cls, DType):
        return isinstance(obj_or_cls, cls_or_tuple)
    return isinstance(obj_or_cls, cls_or_tuple) or (
        isinstance(obj_or_cls, type) and issubclass(obj_or_cls, cls_or_tuple)
    )


def validate_laziness(items: Iterable[Any]) -> None:
    from narwhals.dataframe import DataFrame, LazyFrame

    if all(isinstance(item, DataFrame) for item in items) or (
        all(isinstance(item, LazyFrame) for item in items)
    ):
        return
    msg = f"The items to concatenate should either all be eager, or all lazy, got: {[type(item) for item in items]}"
    raise TypeError(msg)


def maybe_align_index(
    lhs: FrameOrSeriesT, rhs: Series[Any] | DataFrame[Any] | LazyFrame[Any]
) -> FrameOrSeriesT:
    """Align `lhs` to the Index of `rhs`, if they're both pandas-like.

    Arguments:
        lhs: Dataframe or Series.
        rhs: Dataframe or Series to align with.

    Returns:
        Same type as input.

    Notes:
        This is only really intended for backwards-compatibility purposes,
        for example if your library already aligns indices for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.
        For non-pandas-like inputs, this only checks that `lhs` and `rhs`
        are the same length.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2]}, index=[3, 4])
        >>> s_pd = pd.Series([6, 7], index=[4, 3])
        >>> df = nw.from_native(df_pd)
        >>> s = nw.from_native(s_pd, series_only=True)
        >>> nw.to_native(nw.maybe_align_index(df, s))
           a
        4  2
        3  1
    """
    from narwhals._pandas_like.dataframe import PandasLikeDataFrame
    from narwhals._pandas_like.series import PandasLikeSeries

    def _validate_index(index: Any) -> None:
        if not index.is_unique:
            msg = "given index doesn't have a unique index"
            raise ValueError(msg)

    lhs_any = cast("Any", lhs)
    rhs_any = cast("Any", rhs)
    if isinstance(
        getattr(lhs_any, "_compliant_frame", None), PandasLikeDataFrame
    ) and isinstance(getattr(rhs_any, "_compliant_frame", None), PandasLikeDataFrame):
        _validate_index(lhs_any._compliant_frame.native.index)
        _validate_index(rhs_any._compliant_frame.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_frame._with_native(
                lhs_any._compliant_frame.native.loc[rhs_any._compliant_frame.native.index]
            )
        )
    if isinstance(
        getattr(lhs_any, "_compliant_frame", None), PandasLikeDataFrame
    ) and isinstance(getattr(rhs_any, "_compliant_series", None), PandasLikeSeries):
        _validate_index(lhs_any._compliant_frame.native.index)
        _validate_index(rhs_any._compliant_series.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_frame._with_native(
                lhs_any._compliant_frame.native.loc[
                    rhs_any._compliant_series.native.index
                ]
            )
        )
    if isinstance(
        getattr(lhs_any, "_compliant_series", None), PandasLikeSeries
    ) and isinstance(getattr(rhs_any, "_compliant_frame", None), PandasLikeDataFrame):
        _validate_index(lhs_any._compliant_series.native.index)
        _validate_index(rhs_any._compliant_frame.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_series._with_native(
                lhs_any._compliant_series.native.loc[
                    rhs_any._compliant_frame.native.index
                ]
            )
        )
    if isinstance(
        getattr(lhs_any, "_compliant_series", None), PandasLikeSeries
    ) and isinstance(getattr(rhs_any, "_compliant_series", None), PandasLikeSeries):
        _validate_index(lhs_any._compliant_series.native.index)
        _validate_index(rhs_any._compliant_series.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_series._with_native(
                lhs_any._compliant_series.native.loc[
                    rhs_any._compliant_series.native.index
                ]
            )
        )
    if len(lhs_any) != len(rhs_any):
        msg = f"Expected `lhs` and `rhs` to have the same length, got {len(lhs_any)} and {len(rhs_any)}"
        raise ValueError(msg)
    return lhs


def maybe_get_index(obj: DataFrame[Any] | LazyFrame[Any] | Series[Any]) -> Any | None:
    """Get the index of a DataFrame or a Series, if it's pandas-like.

    Arguments:
        obj: Dataframe or Series.

    Returns:
        Same type as input.

    Notes:
        This is only really intended for backwards-compatibility purposes,
        for example if your library already aligns indices for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.
        For non-pandas-like inputs, this returns `None`.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
        >>> df = nw.from_native(df_pd)
        >>> nw.maybe_get_index(df)
        RangeIndex(start=0, stop=2, step=1)
        >>> series_pd = pd.Series([1, 2])
        >>> series = nw.from_native(series_pd, series_only=True)
        >>> nw.maybe_get_index(series)
        RangeIndex(start=0, stop=2, step=1)
    """
    obj_any = cast("Any", obj)
    native_obj = obj_any.to_native()
    if is_pandas_like_dataframe(native_obj) or is_pandas_like_series(native_obj):
        return native_obj.index
    return None


def maybe_set_index(
    obj: FrameOrSeriesT,
    column_names: str | list[str] | None = None,
    *,
    index: Series[IntoSeriesT] | list[Series[IntoSeriesT]] | None = None,
) -> FrameOrSeriesT:
    """Set the index of a DataFrame or a Series, if it's pandas-like.

    Arguments:
        obj: object for which maybe set the index (can be either a Narwhals `DataFrame`
            or `Series`).
        column_names: name or list of names of the columns to set as index.
            For dataframes, only one of `column_names` and `index` can be specified but
            not both. If `column_names` is passed and `df` is a Series, then a
            `ValueError` is raised.
        index: series or list of series to set as index.

    Returns:
        Same type as input.

    Raises:
        ValueError: If one of the following conditions happens

            - none of `column_names` and `index` are provided
            - both `column_names` and `index` are provided
            - `column_names` is provided and `df` is a Series

    Notes:
        This is only really intended for backwards-compatibility purposes, for example if
        your library already aligns indices for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.

        For non-pandas-like inputs, this is a no-op.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
        >>> df = nw.from_native(df_pd)
        >>> nw.to_native(nw.maybe_set_index(df, "b"))  # doctest: +NORMALIZE_WHITESPACE
           a
        b
        4  1
        5  2
    """
    from narwhals.translate import to_native

    df_any = cast("Any", obj)
    native_obj = df_any.to_native()

    if column_names is not None and index is not None:
        msg = "Only one of `column_names` or `index` should be provided"
        raise ValueError(msg)

    if not column_names and index is None:
        msg = "Either `column_names` or `index` should be provided"
        raise ValueError(msg)

    if index is not None:
        keys = (
            [to_native(idx, pass_through=True) for idx in index]
            if _is_iterable(index)
            else to_native(index, pass_through=True)
        )
    else:
        keys = column_names

    if is_pandas_like_dataframe(native_obj):
        return df_any._with_compliant(
            df_any._compliant_frame._with_native(native_obj.set_index(keys))
        )
    elif is_pandas_like_series(native_obj):
        from narwhals._pandas_like.utils import set_index

        if column_names:
            msg = "Cannot set index using column names on a Series"
            raise ValueError(msg)

        native_obj = set_index(
            native_obj,
            keys,
            implementation=obj._compliant_series._implementation,  # type: ignore[union-attr]
            backend_version=obj._compliant_series._backend_version,  # type: ignore[union-attr]
        )
        return df_any._with_compliant(df_any._compliant_series._with_native(native_obj))
    else:
        return df_any


def maybe_reset_index(obj: FrameOrSeriesT) -> FrameOrSeriesT:
    """Reset the index to the default integer index of a DataFrame or a Series, if it's pandas-like.

    Arguments:
        obj: Dataframe or Series.

    Returns:
        Same type as input.

    Notes:
        This is only really intended for backwards-compatibility purposes,
        for example if your library already resets the index for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.
        For non-pandas-like inputs, this is a no-op.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]}, index=([6, 7]))
        >>> df = nw.from_native(df_pd)
        >>> nw.to_native(nw.maybe_reset_index(df))
           a  b
        0  1  4
        1  2  5
        >>> series_pd = pd.Series([1, 2])
        >>> series = nw.from_native(series_pd, series_only=True)
        >>> nw.maybe_get_index(series)
        RangeIndex(start=0, stop=2, step=1)
    """
    obj_any = cast("Any", obj)
    native_obj = obj_any.to_native()
    if is_pandas_like_dataframe(native_obj):
        native_namespace = obj_any.__native_namespace__()
        if _has_default_index(native_obj, native_namespace):
            return obj_any
        return obj_any._with_compliant(
            obj_any._compliant_frame._with_native(native_obj.reset_index(drop=True))
        )
    if is_pandas_like_series(native_obj):
        native_namespace = obj_any.__native_namespace__()
        if _has_default_index(native_obj, native_namespace):
            return obj_any
        return obj_any._with_compliant(
            obj_any._compliant_series._with_native(native_obj.reset_index(drop=True))
        )
    return obj_any


def _is_range_index(obj: Any, native_namespace: Any) -> TypeIs[pd.RangeIndex]:
    return isinstance(obj, native_namespace.RangeIndex)


def _has_default_index(
    native_frame_or_series: pd.Series[Any] | pd.DataFrame, native_namespace: Any
) -> bool:
    index = native_frame_or_series.index
    return (
        _is_range_index(index, native_namespace)
        and index.start == 0
        and index.stop == len(index)
        and index.step == 1
    )


def maybe_convert_dtypes(
    obj: FrameOrSeriesT, *args: bool, **kwargs: bool | str
) -> FrameOrSeriesT:
    """Convert columns or series to the best possible dtypes using dtypes supporting ``pd.NA``, if df is pandas-like.

    Arguments:
        obj: DataFrame or Series.
        *args: Additional arguments which gets passed through.
        **kwargs: Additional arguments which gets passed through.

    Returns:
        Same type as input.

    Notes:
        For non-pandas-like inputs, this is a no-op.
        Also, `args` and `kwargs` just get passed down to the underlying library as-is.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import numpy as np
        >>> df_pd = pd.DataFrame(
        ...     {
        ...         "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
        ...         "b": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
        ...     }
        ... )
        >>> df = nw.from_native(df_pd)
        >>> nw.to_native(
        ...     nw.maybe_convert_dtypes(df)
        ... ).dtypes  # doctest: +NORMALIZE_WHITESPACE
        a             Int32
        b           boolean
        dtype: object
    """
    obj_any = cast("Any", obj)
    native_obj = obj_any.to_native()
    if is_pandas_like_dataframe(native_obj):
        return obj_any._with_compliant(
            obj_any._compliant_frame._with_native(
                native_obj.convert_dtypes(*args, **kwargs)
            )
        )
    if is_pandas_like_series(native_obj):
        return obj_any._with_compliant(
            obj_any._compliant_series._with_native(
                native_obj.convert_dtypes(*args, **kwargs)
            )
        )
    return obj_any


def scale_bytes(sz: int, unit: SizeUnit) -> int | float:
    """Scale size in bytes to other size units (eg: "kb", "mb", "gb", "tb").

    Arguments:
        sz: original size in bytes
        unit: size unit to convert into

    Returns:
        Integer or float.
    """
    if unit in {"b", "bytes"}:
        return sz
    elif unit in {"kb", "kilobytes"}:
        return sz / 1024
    elif unit in {"mb", "megabytes"}:
        return sz / 1024**2
    elif unit in {"gb", "gigabytes"}:
        return sz / 1024**3
    elif unit in {"tb", "terabytes"}:
        return sz / 1024**4
    else:
        msg = f"`unit` must be one of {{'b', 'kb', 'mb', 'gb', 'tb'}}, got {unit!r}"
        raise ValueError(msg)


def is_ordered_categorical(series: Series[Any]) -> bool:
    """Return whether indices of categories are semantically meaningful.

    This is a convenience function to accessing what would otherwise be
    the `is_ordered` property from the DataFrame Interchange Protocol,
    see https://data-apis.org/dataframe-protocol/latest/API.html.

    - For Polars:
      - Enums are always ordered.
      - Categoricals are ordered if `dtype.ordering == "physical"`.
    - For pandas-like APIs:
      - Categoricals are ordered if `dtype.cat.ordered == True`.
    - For PyArrow table:
      - Categoricals are ordered if `dtype.type.ordered == True`.

    Arguments:
        series: Input Series.

    Returns:
        Whether the Series is an ordered categorical.

    Examples:
        >>> import narwhals as nw
        >>> import pandas as pd
        >>> import polars as pl
        >>> data = ["x", "y"]
        >>> s_pd = pd.Series(data, dtype=pd.CategoricalDtype(ordered=True))
        >>> s_pl = pl.Series(data, dtype=pl.Categorical(ordering="physical"))

        Let's define a library-agnostic function:

        >>> @nw.narwhalify
        ... def func(s):
        ...     return nw.is_ordered_categorical(s)

        Then, we can pass any supported library to `func`:

        >>> func(s_pd)
        True
        >>> func(s_pl)
        True
    """
    from narwhals._interchange.series import InterchangeSeries

    dtypes = series._compliant_series._version.dtypes
    compliant = series._compliant_series
    # If it doesn't match any branches, let's just play it safe and return False.
    result: bool = False
    if isinstance(compliant, InterchangeSeries) and isinstance(
        series.dtype, dtypes.Categorical
    ):
        result = compliant.native.describe_categorical["is_ordered"]
    elif series.dtype == dtypes.Enum:
        result = True
    elif series.dtype != dtypes.Categorical:
        result = False
    else:
        native = series.to_native()
        if is_polars_series(native):
            result = cast("pl.Categorical", native.dtype).ordering == "physical"
        elif is_pandas_like_series(native):
            result = bool(native.cat.ordered)
        elif is_pyarrow_chunked_array(native):
            from narwhals._arrow.utils import is_dictionary

            result = is_dictionary(native.type) and native.type.ordered
    return result


def generate_unique_token(
    n_bytes: int, columns: Sequence[str]
) -> str:  # pragma: no cover
    msg = (
        "Use `generate_temporary_column_name` instead. `generate_unique_token` is "
        "deprecated and it will be removed in future versions"
    )
    issue_deprecation_warning(msg, _version="1.13.0")
    return generate_temporary_column_name(n_bytes=n_bytes, columns=columns)


def generate_temporary_column_name(n_bytes: int, columns: Sequence[str]) -> str:
    """Generates a unique column name that is not present in the given list of columns.

    It relies on [python secrets token_hex](https://docs.python.org/3/library/secrets.html#secrets.token_hex)
    function to return a string nbytes random bytes.

    Arguments:
        n_bytes: The number of bytes to generate for the token.
        columns: The list of columns to check for uniqueness.

    Returns:
        A unique token that is not present in the given list of columns.

    Raises:
        AssertionError: If a unique token cannot be generated after 100 attempts.

    Examples:
        >>> import narwhals as nw
        >>> columns = ["abc", "xyz"]
        >>> nw.generate_temporary_column_name(n_bytes=8, columns=columns) not in columns
        True
    """
    counter = 0
    while True:
        token = token_hex(n_bytes)
        if token not in columns:
            return token

        counter += 1
        if counter > 100:
            msg = (
                "Internal Error: Narwhals was not able to generate a column name with "
                f"{n_bytes=} and not in {columns}"
            )
            raise AssertionError(msg)


def parse_columns_to_drop(
    frame: _StoresColumns, subset: Iterable[str], /, *, strict: bool
) -> list[str]:
    if not strict:
        return list(set(frame.columns).intersection(subset))
    to_drop = list(subset)
    if error := check_columns_exist(to_drop, available=frame.columns):
        raise error
    return to_drop


def is_sequence_but_not_str(sequence: Sequence[_T] | Any) -> TypeIs[Sequence[_T]]:
    return isinstance(sequence, Sequence) and not isinstance(sequence, str)


def is_slice_none(obj: Any) -> TypeIs[_SliceNone]:
    return isinstance(obj, slice) and obj == slice(None)


def is_sized_multi_index_selector(
    obj: Any,
) -> TypeIs[SizedMultiIndexSelector[Series[Any] | CompliantSeries[Any]]]:
    return (
        (
            is_sequence_but_not_str(obj)
            and ((len(obj) > 0 and isinstance(obj[0], int)) or (len(obj) == 0))
        )
        or is_numpy_array_1d_int(obj)
        or is_narwhals_series_int(obj)
        or is_compliant_series_int(obj)
    )


def is_sequence_like(
    obj: Sequence[_T] | Any,
) -> TypeIs[Sequence[_T] | Series[Any] | _1DArray]:
    return (
        is_sequence_but_not_str(obj)
        or is_numpy_array_1d(obj)
        or is_narwhals_series(obj)
        or is_compliant_series(obj)
    )


def is_slice_index(obj: Any) -> TypeIs[_SliceIndex]:
    return isinstance(obj, slice) and (
        isinstance(obj.start, int)
        or isinstance(obj.stop, int)
        or (isinstance(obj.step, int) and obj.start is None and obj.stop is None)
    )


def is_range(obj: Any) -> TypeIs[range]:
    return isinstance(obj, range)


def is_single_index_selector(obj: Any) -> TypeIs[SingleIndexSelector]:
    return bool(isinstance(obj, int) and not isinstance(obj, bool))


def is_index_selector(
    obj: Any,
) -> TypeIs[SingleIndexSelector | MultiIndexSelector[Series[Any] | CompliantSeries[Any]]]:
    return (
        is_single_index_selector(obj)
        or is_sized_multi_index_selector(obj)
        or is_slice_index(obj)
    )


def is_list_of(obj: Any, tp: type[_T]) -> TypeIs[list[_T]]:
    # Check if an object is a list of `tp`, only sniffing the first element.
    return bool(isinstance(obj, list) and obj and isinstance(obj[0], tp))


def is_sequence_of(obj: Any, tp: type[_T]) -> TypeIs[Sequence[_T]]:
    # Check if an object is a sequence of `tp`, only sniffing the first element.
    return bool(
        is_sequence_but_not_str(obj)
        and (first := next(iter(obj), None))
        and isinstance(first, tp)
    )


def find_stacklevel() -> int:
    """Find the first place in the stack that is not inside narwhals.

    Returns:
        Stacklevel.

    Taken from:
    https://github.com/pandas-dev/pandas/blob/ab89c53f48df67709a533b6a95ce3d911871a0a8/pandas/util/_exceptions.py#L30-L51
    """
    import inspect
    from pathlib import Path

    import narwhals as nw

    pkg_dir = str(Path(nw.__file__).parent)

    # https://stackoverflow.com/questions/17407119/python-inspect-stack-is-slow
    frame = inspect.currentframe()
    n = 0
    try:
        while frame:
            fname = inspect.getfile(frame)
            if fname.startswith(pkg_dir) or (
                (qualname := getattr(frame.f_code, "co_qualname", None))
                # ignore @singledispatch wrappers
                and qualname.startswith("singledispatch.")
            ):
                frame = frame.f_back
                n += 1
            else:  # pragma: no cover
                break
        else:  # pragma: no cover
            pass
    finally:
        # https://docs.python.org/3/library/inspect.html
        # > Though the cycle detector will catch these, destruction of the frames
        # > (and local variables) can be made deterministic by removing the cycle
        # > in a finally clause.
        del frame
    return n


def issue_deprecation_warning(message: str, _version: str) -> None:
    """Issue a deprecation warning.

    Arguments:
        message: The message associated with the warning.
        _version: Narwhals version when the warning was introduced. Just used for internal
            bookkeeping.
    """
    warn(message=message, category=DeprecationWarning, stacklevel=find_stacklevel())


def validate_strict_and_pass_though(
    strict: bool | None,  # noqa: FBT001
    pass_through: bool | None,  # noqa: FBT001
    *,
    pass_through_default: bool,
    emit_deprecation_warning: bool,
) -> bool:
    if strict is None and pass_through is None:
        pass_through = pass_through_default
    elif strict is not None and pass_through is None:
        if emit_deprecation_warning:
            msg = (
                "`strict` in `from_native` is deprecated, please use `pass_through` instead.\n\n"
                "Note: `strict` will remain available in `narwhals.stable.v1`.\n"
                "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
            )
            issue_deprecation_warning(msg, _version="1.13.0")
        pass_through = not strict
    elif strict is None and pass_through is not None:
        pass
    else:
        msg = "Cannot pass both `strict` and `pass_through`"
        raise ValueError(msg)
    return pass_through


def deprecate_native_namespace(
    *, warn_version: str = "", required: bool = False
) -> Callable[[Callable[P, R]], Callable[P, R]]:
    """Decorator to transition from `native_namespace` to `backend` argument.

    Arguments:
        warn_version: Emit a deprecation warning from this version.
        required: Raise when both `native_namespace`, `backend` are `None`.

    Returns:
        Wrapped function, with `native_namespace` **removed**.
    """

    def decorate(fn: Callable[P, R], /) -> Callable[P, R]:
        @wraps(fn)
        def wrapper(*args: P.args, **kwds: P.kwargs) -> R:
            backend = kwds.pop("backend", None)
            native_namespace = kwds.pop("native_namespace", None)
            if native_namespace is not None and backend is None:
                if warn_version:
                    msg = (
                        "`native_namespace` is deprecated, please use `backend` instead.\n\n"
                        "Note: `native_namespace` will remain available in `narwhals.stable.v1`.\n"
                        "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
                    )
                    issue_deprecation_warning(msg, _version=warn_version)
                backend = native_namespace
            elif native_namespace is not None and backend is not None:
                msg = "Can't pass both `native_namespace` and `backend`"
                raise ValueError(msg)
            elif native_namespace is None and backend is None and required:
                msg = f"`backend` must be specified in `{fn.__name__}`."
                raise ValueError(msg)
            kwds["backend"] = backend
            return fn(*args, **kwds)

        return wrapper

    return decorate


def _validate_rolling_arguments(
    window_size: int, min_samples: int | None
) -> tuple[int, int]:
    ensure_type(window_size, int, param_name="window_size")
    ensure_type(min_samples, int, type(None), param_name="min_samples")

    if window_size < 1:
        msg = "window_size must be greater or equal than 1"
        raise ValueError(msg)

    if min_samples is not None:
        if min_samples < 1:
            msg = "min_samples must be greater or equal than 1"
            raise ValueError(msg)

        if min_samples > window_size:
            msg = "`min_samples` must be less or equal than `window_size`"
            raise InvalidOperationError(msg)
    else:
        min_samples = window_size

    return window_size, min_samples


def generate_repr(header: str, native_repr: str) -> str:
    try:
        terminal_width = os.get_terminal_size().columns
    except OSError:
        terminal_width = int(os.getenv("COLUMNS", 80))  # noqa: PLW1508
    native_lines = native_repr.expandtabs().splitlines()
    max_native_width = max(len(line) for line in native_lines)

    if max_native_width + 2 <= terminal_width:
        length = max(max_native_width, len(header))
        output = f"┌{'─' * length}\n"
        header_extra = length - len(header)
        output += f"|{' ' * (header_extra // 2)}{header}{' ' * (header_extra // 2 + header_extra % 2)}|\n"
        output += f"|{'-' * (length)}|\n"
        start_extra = (length - max_native_width) // 2
        end_extra = (length - max_native_width) // 2 + (length - max_native_width) % 2
        for line in native_lines:
            output += f"|{' ' * (start_extra)}{line}{' ' * (end_extra + max_native_width - len(line))}|\n"
        output += f"└{'─' * length}┘"
        return output

    diff = 39 - len(header)
    return (
        f"┌{'─' * (39)}\n"
        f"|{' ' * (diff // 2)}{header}{' ' * (diff // 2 + diff % 2)}|\n"
        "| Use `.to_native` to see native output |\n└"
        f"{'─' * 39}┘"
    )


def check_columns_exist(
    subset: Sequence[str], /, *, available: Sequence[str]
) -> ColumnNotFoundError | None:
    if missing := set(subset).difference(available):
        return ColumnNotFoundError.from_missing_and_available_column_names(
            missing, available
        )
    return None


def check_column_names_are_unique(columns: Sequence[str]) -> None:
    len_unique_columns = len(set(columns))
    if len(columns) != len_unique_columns:
        from collections import Counter

        counter = Counter(columns)
        duplicates = {k: v for k, v in counter.items() if v > 1}
        msg = "".join(f"\n- '{k}' {v} times" for k, v in duplicates.items())
        msg = f"Expected unique column names, got:{msg}"
        raise DuplicateError(msg)


def _parse_time_unit_and_time_zone(
    time_unit: TimeUnit | Iterable[TimeUnit] | None,
    time_zone: str | timezone | Iterable[str | timezone | None] | None,
) -> tuple[Set[TimeUnit], Set[str | None]]:
    time_units: Set[TimeUnit] = (
        {"ms", "us", "ns", "s"}
        if time_unit is None
        else {time_unit}
        if isinstance(time_unit, str)
        else set(time_unit)
    )
    time_zones: Set[str | None] = (
        {None}
        if time_zone is None
        else {str(time_zone)}
        if isinstance(time_zone, (str, timezone))
        else {str(tz) if tz is not None else None for tz in time_zone}
    )
    return time_units, time_zones


def dtype_matches_time_unit_and_time_zone(
    dtype: DType, dtypes: DTypes, time_units: Set[TimeUnit], time_zones: Set[str | None]
) -> bool:
    return (
        isinstance(dtype, dtypes.Datetime)
        and (dtype.time_unit in time_units)
        and (
            dtype.time_zone in time_zones
            or ("*" in time_zones and dtype.time_zone is not None)
        )
    )


def get_column_names(frame: _StoresColumns, /) -> Sequence[str]:
    return frame.columns


def exclude_column_names(frame: _StoresColumns, names: Container[str]) -> Sequence[str]:
    return [col_name for col_name in frame.columns if col_name not in names]


def passthrough_column_names(names: Sequence[str], /) -> EvalNames[Any]:
    def fn(_frame: Any, /) -> Sequence[str]:
        return names

    return fn


def _hasattr_static(obj: Any, attr: str) -> bool:
    sentinel = object()
    return getattr_static(obj, attr, sentinel) is not sentinel


def is_compliant_dataframe(
    obj: CompliantDataFrame[
        CompliantSeriesT, CompliantExprT, NativeFrameT_co, ToNarwhalsT_co
    ]
    | Any,
) -> TypeIs[
    CompliantDataFrame[CompliantSeriesT, CompliantExprT, NativeFrameT_co, ToNarwhalsT_co]
]:
    return _hasattr_static(obj, "__narwhals_dataframe__")


def is_compliant_lazyframe(
    obj: CompliantLazyFrame[CompliantExprT, NativeFrameT_co, ToNarwhalsT_co] | Any,
) -> TypeIs[CompliantLazyFrame[CompliantExprT, NativeFrameT_co, ToNarwhalsT_co]]:
    return _hasattr_static(obj, "__narwhals_lazyframe__")


def is_compliant_series(
    obj: CompliantSeries[NativeSeriesT_co] | Any,
) -> TypeIs[CompliantSeries[NativeSeriesT_co]]:
    return _hasattr_static(obj, "__narwhals_series__")


def is_compliant_series_int(
    obj: CompliantSeries[NativeSeriesT_co] | Any,
) -> TypeIs[CompliantSeries[NativeSeriesT_co]]:
    return is_compliant_series(obj) and obj.dtype.is_integer()


def is_compliant_expr(
    obj: CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co] | Any,
) -> TypeIs[CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co]]:
    return hasattr(obj, "__narwhals_expr__")


def is_eager_allowed(obj: Implementation) -> TypeIs[EagerAllowedImplementation]:
    return obj in {
        Implementation.PANDAS,
        Implementation.MODIN,
        Implementation.CUDF,
        Implementation.POLARS,
        Implementation.PYARROW,
    }


def has_native_namespace(obj: Any) -> TypeIs[SupportsNativeNamespace]:
    return hasattr(obj, "__native_namespace__")


def _supports_dataframe_interchange(obj: Any) -> TypeIs[DataFrameLike]:
    return hasattr(obj, "__dataframe__")


def supports_arrow_c_stream(obj: Any) -> TypeIs[ArrowStreamExportable]:
    return _hasattr_static(obj, "__arrow_c_stream__")


def _remap_full_join_keys(
    left_on: Sequence[str], right_on: Sequence[str], suffix: str
) -> dict[str, str]:
    """Remap join keys to avoid collisions.

    If left keys collide with the right keys, append the suffix.
    If there's no collision, let the right keys be.

    Arguments:
        left_on: Left keys.
        right_on: Right keys.
        suffix: Suffix to append to right keys.

    Returns:
        A map of old to new right keys.
    """
    right_keys_suffixed = (
        f"{key}{suffix}" if key in left_on else key for key in right_on
    )
    return dict(zip(right_on, right_keys_suffixed))


def _into_arrow_table(data: IntoArrowTable, context: _FullContext, /) -> pa.Table:
    """Guards `ArrowDataFrame.from_arrow` w/ safer imports.

    Arguments:
        data: Object which implements `__arrow_c_stream__`.
        context: Initialized compliant object.

    Returns:
        A PyArrow Table.
    """
    if find_spec("pyarrow"):
        import pyarrow as pa  # ignore-banned-import

        from narwhals._arrow.namespace import ArrowNamespace

        version = context._version
        ns = ArrowNamespace(backend_version=parse_version(pa), version=version)
        return ns._dataframe.from_arrow(data, context=ns).native
    else:  # pragma: no cover
        msg = f"'pyarrow>=14.0.0' is required for `from_arrow` for object of type {qualified_type_name(data)!r}."
        raise ModuleNotFoundError(msg)


# TODO @dangotbanned: Extend with runtime behavior for `v1.*`
# See `narwhals.exceptions.NarwhalsUnstableWarning`
def unstable(fn: _Fn, /) -> _Fn:
    """Visual-only marker for unstable functionality.

    Arguments:
        fn: Function to decorate.

    Returns:
        Decorated function (unchanged).

    Examples:
        >>> from narwhals._utils import unstable
        >>> @unstable
        ... def a_work_in_progress_feature(*args):
        ...     return args
        >>>
        >>> a_work_in_progress_feature.__name__
        'a_work_in_progress_feature'
        >>> a_work_in_progress_feature(1, 2, 3)
        (1, 2, 3)
    """
    return fn


def _is_naive_format(format: str) -> bool:
    """Determines if a datetime format string is 'naive', i.e., does not include timezone information.

    A format is considered naive if it does not contain any of the following

    - '%s': Unix timestamp
    - '%z': UTC offset
    - 'Z' : UTC timezone designator

    Arguments:
        format: The datetime format string to check.

    Returns:
        bool: True if the format is naive (does not include timezone info), False otherwise.
    """
    return not any(x in format for x in ("%s", "%z", "Z"))


class not_implemented:  # noqa: N801
    """Mark some functionality as unsupported.

    Arguments:
        alias: optional name used instead of the data model hook [`__set_name__`].

    Returns:
        An exception-raising [descriptor].

    Notes:
        - Attribute/method name *doesn't* need to be declared twice
        - Allows different behavior when looked up on the class vs instance
        - Allows us to use `isinstance(...)` instead of monkeypatching an attribute to the function

    Examples:
        >>> from narwhals._utils import not_implemented
        >>> class Thing:
        ...     def totally_ready(self) -> str:
        ...         return "I'm ready!"
        ...
        ...     not_ready_yet = not_implemented()
        >>>
        >>> thing = Thing()
        >>> thing.totally_ready()
        "I'm ready!"
        >>> thing.not_ready_yet()
        Traceback (most recent call last):
            ...
        NotImplementedError: 'not_ready_yet' is not implemented for: 'Thing'.
        ...
        >>> isinstance(Thing.not_ready_yet, not_implemented)
        True

    [`__set_name__`]: https://docs.python.org/3/reference/datamodel.html#object.__set_name__
    [descriptor]: https://docs.python.org/3/howto/descriptor.html
    """

    def __init__(self, alias: str | None = None, /) -> None:
        # NOTE: Don't like this
        # Trying to workaround `mypy` requiring `@property` everywhere
        self._alias: str | None = alias

    def __repr__(self) -> str:
        return f"<{type(self).__name__}>: {self._name_owner}.{self._name}"

    def __set_name__(self, owner: type[_T], name: str) -> None:
        # https://docs.python.org/3/howto/descriptor.html#customized-names
        self._name_owner: str = owner.__name__
        self._name: str = self._alias or name

    def __get__(
        self, instance: _T | Literal["raise"] | None, owner: type[_T] | None = None, /
    ) -> Any:
        if instance is None:
            # NOTE: Branch for `cls._name`
            # We can check that to see if an instance of `type(self)` for
            # https://narwhals-dev.github.io/narwhals/api-completeness/expr/
            return self
        # NOTE: Prefer not exposing the actual class we're defining in
        # `_implementation` may not be available everywhere
        who = getattr(instance, "_implementation", self._name_owner)
        raise _not_implemented_error(self._name, who)

    def __call__(self, *args: Any, **kwds: Any) -> Any:
        # NOTE: Purely to duck-type as assignable to **any** instance method
        # Wouldn't be reachable through *regular* attribute access
        return self.__get__("raise")

    @classmethod
    def deprecated(cls, message: LiteralString, /) -> Self:
        """Alt constructor, wraps with `@deprecated`.

        Arguments:
            message: **Static-only** deprecation message, emitted in an IDE.

        Returns:
            An exception-raising [descriptor].

        [descriptor]: https://docs.python.org/3/howto/descriptor.html
        """
        obj = cls()
        return deprecated(message)(obj)


def _not_implemented_error(what: str, who: str, /) -> NotImplementedError:
    msg = (
        f"{what!r} is not implemented for: {who!r}.\n\n"
        "If you would like to see this functionality in `narwhals`, "
        "please open an issue at: https://github.com/narwhals-dev/narwhals/issues"
    )
    return NotImplementedError(msg)


class requires:  # noqa: N801
    """Method decorator for raising under certain constraints.

    Attributes:
        _min_version: Minimum backend version.
        _hint: Optional suggested alternative.

    Examples:
        >>> from narwhals._utils import requires, Implementation
        >>> class SomeBackend:
        ...     _implementation = Implementation.PYARROW
        ...     _backend_version = 20, 0, 0
        ...
        ...     @requires.backend_version((9000, 0, 0))
        ...     def really_complex_feature(self) -> str:
        ...         return "hello"
        >>> backend = SomeBackend()
        >>> backend.really_complex_feature()
        Traceback (most recent call last):
            ...
        NotImplementedError: `really_complex_feature` is only available in 'pyarrow>=9000.0.0', found version '20.0.0'.
    """

    _min_version: tuple[int, ...]
    _hint: str

    @classmethod
    def backend_version(cls, minimum: tuple[int, ...], /, hint: str = "") -> Self:
        """Method decorator for raising below a minimum `_backend_version`.

        Arguments:
            minimum: Minimum backend version.
            hint: Optional suggested alternative.

        Returns:
            An exception-raising decorator.
        """
        obj = cls.__new__(cls)
        obj._min_version = minimum
        obj._hint = hint
        return obj

    @staticmethod
    def _unparse_version(backend_version: tuple[int, ...], /) -> str:
        return ".".join(f"{d}" for d in backend_version)

    def _ensure_version(self, instance: _FullContext, /) -> None:
        if instance._backend_version >= self._min_version:
            return
        method = self._wrapped_name
        backend = instance._implementation
        minimum = self._unparse_version(self._min_version)
        found = self._unparse_version(instance._backend_version)
        msg = f"`{method}` is only available in '{backend}>={minimum}', found version {found!r}."
        if self._hint:
            msg = f"{msg}\n{self._hint}"
        raise NotImplementedError(msg)

    def __call__(self, fn: _Method[_ContextT, P, R], /) -> _Method[_ContextT, P, R]:
        self._wrapped_name = fn.__name__

        @wraps(fn)
        def wrapper(instance: _ContextT, *args: P.args, **kwds: P.kwargs) -> R:
            self._ensure_version(instance)
            return fn(instance, *args, **kwds)

        # NOTE: Only getting a complaint from `mypy`
        return wrapper  # type: ignore[return-value]


def convert_str_slice_to_int_slice(
    str_slice: _SliceName, columns: Sequence[str]
) -> tuple[int | None, int | None, Any]:
    start = columns.index(str_slice.start) if str_slice.start is not None else None
    stop = columns.index(str_slice.stop) + 1 if str_slice.stop is not None else None
    step = str_slice.step
    return (start, stop, step)


def inherit_doc(
    tp_parent: Callable[P, R1], /
) -> Callable[[_Constructor[_T, P, R2]], _Constructor[_T, P, R2]]:
    """Steal the class-level docstring from parent and attach to child `__init__`.

    Returns:
        Decorated constructor.

    Notes:
        - Passes static typing (mostly)
        - Passes at runtime
    """

    def decorate(init_child: _Constructor[_T, P, R2], /) -> _Constructor[_T, P, R2]:
        if init_child.__name__ == "__init__" and issubclass(type(tp_parent), type):
            init_child.__doc__ = getdoc(tp_parent)
            return init_child
        else:  # pragma: no cover
            msg = (
                f"`@{inherit_doc.__name__}` is only allowed to decorate an `__init__` with a class-level doc.\n"
                f"Method: {init_child.__qualname__!r}\n"
                f"Parent: {tp_parent!r}"
            )
            raise TypeError(msg)

    return decorate


def qualified_type_name(obj: object | type[Any], /) -> str:
    tp = obj if isinstance(obj, type) else type(obj)
    module = tp.__module__ if tp.__module__ != "builtins" else ""
    return f"{module}.{tp.__name__}".lstrip(".")


def ensure_type(obj: Any, /, *valid_types: type[Any], param_name: str = "") -> None:
    """Validate that an object is an instance of one or more specified types.

    Parameters:
        obj: The object to validate.
        *valid_types: One or more valid types that `obj` is expected to match.
        param_name: The name of the parameter being validated.
            Used to improve error message clarity.

    Raises:
        TypeError: If `obj` is not an instance of any of the provided `valid_types`.

    Examples:
        >>> from narwhals._utils import ensure_type
        >>> ensure_type(42, int, float)
        >>> ensure_type("hello", str)

        >>> ensure_type("hello", int, param_name="test")
        Traceback (most recent call last):
            ...
        TypeError: Expected 'int', got: 'str'
            test='hello'
                 ^^^^^^^
        >>> import polars as pl
        >>> import pandas as pd
        >>> df = pl.DataFrame([[1], [2], [3], [4], [5]], schema=[*"abcde"])
        >>> ensure_type(df, pd.DataFrame, param_name="df")
        Traceback (most recent call last):
            ...
        TypeError: Expected 'pandas.core.frame.DataFrame', got: 'polars.dataframe.frame.DataFrame'
            df=polars.dataframe.frame.DataFrame(...)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    """
    if not isinstance(obj, valid_types):  # pragma: no cover
        tp_names = " | ".join(qualified_type_name(tp) for tp in valid_types)
        msg = f"Expected {tp_names!r}, got: {qualified_type_name(obj)!r}"
        if param_name:
            left_pad = " " * 4
            val = repr(obj)
            if len(val) > 40:  # truncate long reprs
                val = f"{qualified_type_name(obj)}(...)"
            assign = f"{left_pad}{param_name}="
            underline = (" " * len(assign)) + ("^" * len(val))
            msg = f"{msg}\n{assign}{val}\n{underline}"
        raise TypeError(msg)


class _DeferredIterable(Generic[_T]):
    """Store a callable producing an iterable to defer collection until we need it."""

    def __init__(self, into_iter: Callable[[], Iterable[_T]], /) -> None:
        self._into_iter: Callable[[], Iterable[_T]] = into_iter

    def __iter__(self) -> Iterator[_T]:
        yield from self._into_iter()

    def to_tuple(self) -> tuple[_T, ...]:
        # Collect and return as a `tuple`.
        it = self._into_iter()
        return it if isinstance(it, tuple) else tuple(it)