1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
"""
Built-in datasets for demonstration, educational and test purposes.
"""
import os
from importlib import import_module
import narwhals.stable.v1 as nw
AVAILABLE_BACKENDS = {"pandas", "polars", "pyarrow", "modin", "cudf"}
BACKENDS_WITH_INDEX_SUPPORT = {"pandas", "modin", "cudf"}
def gapminder(
datetimes=False,
centroids=False,
year=None,
pretty_names=False,
return_type="pandas",
):
"""
Each row represents a country on a given year.
https://www.gapminder.org/data/
Parameters
----------
datetimes: bool
Whether or not 'year' column will converted to datetime type
centroids: bool
If True, ['centroid_lat', 'centroid_lon'] columns are added
year: int | None
If provided, the dataset will be filtered for that year
pretty_names: bool
If True, prettifies the column names
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 1704 rows and the following columns:
`['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap',
'iso_alpha', 'iso_num']`.
If `datetimes` is True, the 'year' column will be a datetime column
If `centroids` is True, two new columns are added: ['centroid_lat', 'centroid_lon']
If `year` is an integer, the dataset will be filtered for that year
"""
df = nw.from_native(
_get_dataset("gapminder", return_type=return_type), eager_only=True
)
if year:
df = df.filter(nw.col("year") == year)
if datetimes:
df = df.with_columns(
# Concatenate the year value with the literal "-01-01" so that it can be
# casted to datetime from "%Y-%m-%d" format
nw.concat_str(
[nw.col("year").cast(nw.String()), nw.lit("-01-01")]
).str.to_datetime(format="%Y-%m-%d")
)
if not centroids:
df = df.drop("centroid_lat", "centroid_lon")
if pretty_names:
df = df.rename(
dict(
country="Country",
continent="Continent",
year="Year",
lifeExp="Life Expectancy",
gdpPercap="GDP per Capita",
pop="Population",
iso_alpha="ISO Alpha Country Code",
iso_num="ISO Numeric Country Code",
centroid_lat="Centroid Latitude",
centroid_lon="Centroid Longitude",
)
)
return df.to_native()
def tips(pretty_names=False, return_type="pandas"):
"""
Each row represents a restaurant bill.
https://vincentarelbundock.github.io/Rdatasets/doc/reshape2/tips.html
Parameters
----------
pretty_names: bool
If True, prettifies the column names
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 244 rows and the following columns:
`['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size']`.
"""
df = nw.from_native(_get_dataset("tips", return_type=return_type), eager_only=True)
if pretty_names:
df = df.rename(
dict(
total_bill="Total Bill",
tip="Tip",
sex="Payer Gender",
smoker="Smokers at Table",
day="Day of Week",
time="Meal",
size="Party Size",
)
)
return df.to_native()
def iris(return_type="pandas"):
"""
Each row represents a flower.
https://en.wikipedia.org/wiki/Iris_flower_data_set
Parameters
----------
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 150 rows and the following columns:
`['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species', 'species_id']`.
"""
return _get_dataset("iris", return_type=return_type)
def wind(return_type="pandas"):
"""
Each row represents a level of wind intensity in a cardinal direction, and its frequency.
Parameters
----------
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 128 rows and the following columns:
`['direction', 'strength', 'frequency']`.
"""
return _get_dataset("wind", return_type=return_type)
def election(return_type="pandas"):
"""
Each row represents voting results for an electoral district in the 2013 Montreal
mayoral election.
Parameters
----------
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 58 rows and the following columns:
`['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result', 'district_id']`.
"""
return _get_dataset("election", return_type=return_type)
def election_geojson():
"""
Each feature represents an electoral district in the 2013 Montreal mayoral election.
Returns
-------
A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id`
is an electoral district numerical ID and whose `district` property is the ID and
district name.
"""
import gzip
import json
import os
path = os.path.join(
os.path.dirname(os.path.dirname(__file__)),
"package_data",
"datasets",
"election.geojson.gz",
)
with gzip.GzipFile(path, "r") as f:
result = json.loads(f.read().decode("utf-8"))
return result
def carshare(return_type="pandas"):
"""
Each row represents the availability of car-sharing services near the centroid of a zone
in Montreal over a month-long period.
Parameters
----------
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe` with 249 rows and the following columns:
`['centroid_lat', 'centroid_lon', 'car_hours', 'peak_hour']`.
"""
return _get_dataset("carshare", return_type=return_type)
def stocks(indexed=False, datetimes=False, return_type="pandas"):
"""
Each row in this wide dataset represents closing prices from 6 tech stocks in 2018/2019.
Parameters
----------
indexed: bool
Whether or not the 'date' column is used as the index and the column index
is named 'company'. Applicable only if `return_type='pandas'`
datetimes: bool
Whether or not the 'date' column will be of datetime type
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 100 rows and the following columns:
`['date', 'GOOG', 'AAPL', 'AMZN', 'FB', 'NFLX', 'MSFT']`.
If `indexed` is True, the 'date' column is used as the index and the column index
is named 'company'
If `datetimes` is True, the 'date' column will be a datetime column
"""
if indexed and return_type not in BACKENDS_WITH_INDEX_SUPPORT:
msg = f"Backend '{return_type}' does not support setting index"
raise NotImplementedError(msg)
df = nw.from_native(
_get_dataset("stocks", return_type=return_type), eager_only=True
).with_columns(nw.col("date").cast(nw.String()))
if datetimes:
df = df.with_columns(nw.col("date").str.to_datetime())
if indexed: # then it must be pandas
df = df.to_native().set_index("date")
df.columns.name = "company"
return df
return df.to_native()
def experiment(indexed=False, return_type="pandas"):
"""
Each row in this wide dataset represents the results of 100 simulated participants
on three hypothetical experiments, along with their gender and control/treatment group.
Parameters
----------
indexed: bool
If True, then the index is named "participant".
Applicable only if `return_type='pandas'`
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 100 rows and the following columns:
`['experiment_1', 'experiment_2', 'experiment_3', 'gender', 'group']`.
If `indexed` is True, the data frame index is named "participant"
"""
if indexed and return_type not in BACKENDS_WITH_INDEX_SUPPORT:
msg = f"Backend '{return_type}' does not support setting index"
raise NotImplementedError(msg)
df = nw.from_native(
_get_dataset("experiment", return_type=return_type), eager_only=True
)
if indexed: # then it must be pandas
df = df.to_native()
df.index.name = "participant"
return df
return df.to_native()
def medals_wide(indexed=False, return_type="pandas"):
"""
This dataset represents the medal table for Olympic Short Track Speed Skating for the
top three nations as of 2020.
Parameters
----------
indexed: bool
Whether or not the 'nation' column is used as the index and the column index
is named 'medal'. Applicable only if `return_type='pandas'`
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 3 rows and the following columns:
`['nation', 'gold', 'silver', 'bronze']`.
If `indexed` is True, the 'nation' column is used as the index and the column index
is named 'medal'
"""
if indexed and return_type not in BACKENDS_WITH_INDEX_SUPPORT:
msg = f"Backend '{return_type}' does not support setting index"
raise NotImplementedError(msg)
df = nw.from_native(
_get_dataset("medals", return_type=return_type), eager_only=True
)
if indexed: # then it must be pandas
df = df.to_native().set_index("nation")
df.columns.name = "medal"
return df
return df.to_native()
def medals_long(indexed=False, return_type="pandas"):
"""
This dataset represents the medal table for Olympic Short Track Speed Skating for the
top three nations as of 2020.
Parameters
----------
indexed: bool
Whether or not the 'nation' column is used as the index.
Applicable only if `return_type='pandas'`
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
Dataframe with 9 rows and the following columns: `['nation', 'medal', 'count']`.
If `indexed` is True, the 'nation' column is used as the index.
"""
if indexed and return_type not in BACKENDS_WITH_INDEX_SUPPORT:
msg = f"Backend '{return_type}' does not support setting index"
raise NotImplementedError(msg)
df = nw.from_native(
_get_dataset("medals", return_type=return_type), eager_only=True
).unpivot(
index=["nation"],
value_name="count",
variable_name="medal",
)
if indexed:
df = nw.maybe_set_index(df, "nation")
return df.to_native()
def _get_dataset(d, return_type):
"""
Loads the dataset using the specified backend.
Notice that the available backends are 'pandas', 'polars', 'pyarrow' and they all have
a `read_csv` function (pyarrow has it via pyarrow.csv). Therefore we can dynamically
load the library using `importlib.import_module` and then call
`backend.read_csv(filepath)`.
Parameters
----------
d: str
Name of the dataset to load.
return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
Type of the resulting dataframe
Returns
-------
Dataframe of `return_type` type
"""
filepath = os.path.join(
os.path.dirname(os.path.dirname(__file__)),
"package_data",
"datasets",
d + ".csv.gz",
)
if return_type not in AVAILABLE_BACKENDS:
msg = (
f"Unsupported return_type. Found {return_type}, expected one "
f"of {AVAILABLE_BACKENDS}"
)
raise NotImplementedError(msg)
try:
if return_type == "pyarrow":
module_to_load = "pyarrow.csv"
elif return_type == "modin":
module_to_load = "modin.pandas"
else:
module_to_load = return_type
backend = import_module(module_to_load)
except ModuleNotFoundError:
msg = f"return_type={return_type}, but {return_type} is not installed"
raise ModuleNotFoundError(msg)
try:
return backend.read_csv(filepath)
except Exception as e:
msg = f"Unable to read '{d}' dataset due to: {e}"
raise Exception(msg).with_traceback(e.__traceback__)
|