diff options
Diffstat (limited to 'Eigen/src/SparseCore/SparseSelfAdjointView.h')
-rw-r--r-- | Eigen/src/SparseCore/SparseSelfAdjointView.h | 659 |
1 files changed, 659 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/SparseSelfAdjointView.h b/Eigen/src/SparseCore/SparseSelfAdjointView.h new file mode 100644 index 0000000..85b00e1 --- /dev/null +++ b/Eigen/src/SparseCore/SparseSelfAdjointView.h @@ -0,0 +1,659 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H +#define EIGEN_SPARSE_SELFADJOINTVIEW_H + +namespace Eigen { + +/** \ingroup SparseCore_Module + * \class SparseSelfAdjointView + * + * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. + * + * \param MatrixType the type of the dense matrix storing the coefficients + * \param Mode can be either \c #Lower or \c #Upper + * + * This class is an expression of a sefladjoint matrix from a triangular part of a matrix + * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() + * and most of the time this is the only way that it is used. + * + * \sa SparseMatrixBase::selfadjointView() + */ +namespace internal { + +template<typename MatrixType, unsigned int Mode> +struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> { +}; + +template<int SrcMode,int DstMode,typename MatrixType,int DestOrder> +void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0); + +template<int Mode,typename MatrixType,int DestOrder> +void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0); + +} + +template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView + : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> > +{ + public: + + enum { + Mode = _Mode, + TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0), + RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime, + ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime + }; + + typedef EigenBase<SparseSelfAdjointView> Base; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix<StorageIndex,Dynamic,1> VectorI; + typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; + typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested; + + explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) + { + eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); + } + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + /** \internal \returns a reference to the nested matrix */ + const _MatrixTypeNested& matrix() const { return m_matrix; } + typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; } + + /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. + * + * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. + * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. + */ + template<typename OtherDerived> + Product<SparseSelfAdjointView, OtherDerived> + operator*(const SparseMatrixBase<OtherDerived>& rhs) const + { + return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); + } + + /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. + * + * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. + * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. + */ + template<typename OtherDerived> friend + Product<OtherDerived, SparseSelfAdjointView> + operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) + { + return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); + } + + /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ + template<typename OtherDerived> + Product<SparseSelfAdjointView,OtherDerived> + operator*(const MatrixBase<OtherDerived>& rhs) const + { + return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived()); + } + + /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ + template<typename OtherDerived> friend + Product<OtherDerived,SparseSelfAdjointView> + operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) + { + return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs); + } + + /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: + * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. + * + * \returns a reference to \c *this + * + * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply + * call this function with u.adjoint(). + */ + template<typename DerivedU> + SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); + + /** \returns an expression of P H P^-1 */ + // TODO implement twists in a more evaluator friendly fashion + SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const + { + return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm); + } + + template<typename SrcMatrixType,int SrcMode> + SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix) + { + internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); + return *this; + } + + SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) + { + PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull; + return *this = src.twistedBy(pnull); + } + + // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor + EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView) + + template<typename SrcMatrixType,unsigned int SrcMode> + SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src) + { + PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull; + return *this = src.twistedBy(pnull); + } + + void resize(Index rows, Index cols) + { + EIGEN_ONLY_USED_FOR_DEBUG(rows); + EIGEN_ONLY_USED_FOR_DEBUG(cols); + eigen_assert(rows == this->rows() && cols == this->cols() + && "SparseSelfadjointView::resize() does not actually allow to resize."); + } + + protected: + + MatrixTypeNested m_matrix; + //mutable VectorI m_countPerRow; + //mutable VectorI m_countPerCol; + private: + template<typename Dest> void evalTo(Dest &) const; +}; + +/*************************************************************************** +* Implementation of SparseMatrixBase methods +***************************************************************************/ + +template<typename Derived> +template<unsigned int UpLo> +typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const +{ + return SparseSelfAdjointView<const Derived, UpLo>(derived()); +} + +template<typename Derived> +template<unsigned int UpLo> +typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() +{ + return SparseSelfAdjointView<Derived, UpLo>(derived()); +} + +/*************************************************************************** +* Implementation of SparseSelfAdjointView methods +***************************************************************************/ + +template<typename MatrixType, unsigned int Mode> +template<typename DerivedU> +SparseSelfAdjointView<MatrixType,Mode>& +SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha) +{ + SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint(); + if(alpha==Scalar(0)) + m_matrix = tmp.template triangularView<Mode>(); + else + m_matrix += alpha * tmp.template triangularView<Mode>(); + + return *this; +} + +namespace internal { + +// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> +// in the future selfadjoint-ness should be defined by the expression traits +// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) +template<typename MatrixType, unsigned int Mode> +struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> > +{ + typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; + typedef SparseSelfAdjointShape Shape; +}; + +struct SparseSelfAdjoint2Sparse {}; + +template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; }; +template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; }; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse> +{ + typedef typename DstXprType::StorageIndex StorageIndex; + typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType; + + template<typename DestScalar,int StorageOrder> + static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/) + { + internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst); + } + + // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to: + template<typename DestScalar,int StorageOrder,typename AssignFunc> + static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func) + { + SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); + run(tmp, src, AssignOpType()); + call_assignment_no_alias_no_transpose(dst, tmp, func); + } + + template<typename DestScalar,int StorageOrder> + static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, + const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */) + { + SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); + run(tmp, src, AssignOpType()); + dst += tmp; + } + + template<typename DestScalar,int StorageOrder> + static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, + const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */) + { + SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); + run(tmp, src, AssignOpType()); + dst -= tmp; + } + + template<typename DestScalar> + static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/) + { + // TODO directly evaluate into dst; + SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols()); + internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp); + dst = tmp; + } +}; + +} // end namespace internal + +/*************************************************************************** +* Implementation of sparse self-adjoint time dense matrix +***************************************************************************/ + +namespace internal { + +template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> +inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) +{ + EIGEN_ONLY_USED_FOR_DEBUG(alpha); + + typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested; + typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned; + typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval; + typedef typename LhsEval::InnerIterator LhsIterator; + typedef typename SparseLhsType::Scalar LhsScalar; + + enum { + LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit, + ProcessFirstHalf = + ((Mode&(Upper|Lower))==(Upper|Lower)) + || ( (Mode&Upper) && !LhsIsRowMajor) + || ( (Mode&Lower) && LhsIsRowMajor), + ProcessSecondHalf = !ProcessFirstHalf + }; + + SparseLhsTypeNested lhs_nested(lhs); + LhsEval lhsEval(lhs_nested); + + // work on one column at once + for (Index k=0; k<rhs.cols(); ++k) + { + for (Index j=0; j<lhs.outerSize(); ++j) + { + LhsIterator i(lhsEval,j); + // handle diagonal coeff + if (ProcessSecondHalf) + { + while (i && i.index()<j) ++i; + if(i && i.index()==j) + { + res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); + ++i; + } + } + + // premultiplied rhs for scatters + typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k)); + // accumulator for partial scalar product + typename DenseResType::Scalar res_j(0); + for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) + { + LhsScalar lhs_ij = i.value(); + if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); + res_j += lhs_ij * rhs.coeff(i.index(),k); + res(i.index(),k) += numext::conj(lhs_ij) * rhs_j; + } + res.coeffRef(j,k) += alpha * res_j; + + // handle diagonal coeff + if (ProcessFirstHalf && i && (i.index()==j)) + res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); + } + } +} + + +template<typename LhsView, typename Rhs, int ProductType> +struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> +: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> > +{ + template<typename Dest> + static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) + { + typedef typename LhsView::_MatrixTypeNested Lhs; + typedef typename nested_eval<Lhs,Dynamic>::type LhsNested; + typedef typename nested_eval<Rhs,Dynamic>::type RhsNested; + LhsNested lhsNested(lhsView.matrix()); + RhsNested rhsNested(rhs); + + internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha); + } +}; + +template<typename Lhs, typename RhsView, int ProductType> +struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> +: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> > +{ + template<typename Dest> + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) + { + typedef typename RhsView::_MatrixTypeNested Rhs; + typedef typename nested_eval<Lhs,Dynamic>::type LhsNested; + typedef typename nested_eval<Rhs,Dynamic>::type RhsNested; + LhsNested lhsNested(lhs); + RhsNested rhsNested(rhsView.matrix()); + + // transpose everything + Transpose<Dest> dstT(dst); + internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); + } +}; + +// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix +// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore + +template<typename LhsView, typename Rhs, int ProductTag> +struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape> + : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject> +{ + typedef Product<LhsView, Rhs, DefaultProduct> XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator<PlainObject> Base; + + product_evaluator(const XprType& xpr) + : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast<Base*>(this)) Base(m_result); + generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs()); + } + +protected: + typename Rhs::PlainObject m_lhs; + PlainObject m_result; +}; + +template<typename Lhs, typename RhsView, int ProductTag> +struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape> + : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject> +{ + typedef Product<Lhs, RhsView, DefaultProduct> XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator<PlainObject> Base; + + product_evaluator(const XprType& xpr) + : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast<Base*>(this)) Base(m_result); + generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs); + } + +protected: + typename Lhs::PlainObject m_rhs; + PlainObject m_result; +}; + +} // namespace internal + +/*************************************************************************** +* Implementation of symmetric copies and permutations +***************************************************************************/ +namespace internal { + +template<int Mode,typename MatrixType,int DestOrder> +void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm) +{ + typedef typename MatrixType::StorageIndex StorageIndex; + typedef typename MatrixType::Scalar Scalar; + typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest; + typedef Matrix<StorageIndex,Dynamic,1> VectorI; + typedef evaluator<MatrixType> MatEval; + typedef typename evaluator<MatrixType>::InnerIterator MatIterator; + + MatEval matEval(mat); + Dest& dest(_dest.derived()); + enum { + StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) + }; + + Index size = mat.rows(); + VectorI count; + count.resize(size); + count.setZero(); + dest.resize(size,size); + for(Index j = 0; j<size; ++j) + { + Index jp = perm ? perm[j] : j; + for(MatIterator it(matEval,j); it; ++it) + { + Index i = it.index(); + Index r = it.row(); + Index c = it.col(); + Index ip = perm ? perm[i] : i; + if(Mode==int(Upper|Lower)) + count[StorageOrderMatch ? jp : ip]++; + else if(r==c) + count[ip]++; + else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c)) + { + count[ip]++; + count[jp]++; + } + } + } + Index nnz = count.sum(); + + // reserve space + dest.resizeNonZeros(nnz); + dest.outerIndexPtr()[0] = 0; + for(Index j=0; j<size; ++j) + dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; + for(Index j=0; j<size; ++j) + count[j] = dest.outerIndexPtr()[j]; + + // copy data + for(StorageIndex j = 0; j<size; ++j) + { + for(MatIterator it(matEval,j); it; ++it) + { + StorageIndex i = internal::convert_index<StorageIndex>(it.index()); + Index r = it.row(); + Index c = it.col(); + + StorageIndex jp = perm ? perm[j] : j; + StorageIndex ip = perm ? perm[i] : i; + + if(Mode==int(Upper|Lower)) + { + Index k = count[StorageOrderMatch ? jp : ip]++; + dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; + dest.valuePtr()[k] = it.value(); + } + else if(r==c) + { + Index k = count[ip]++; + dest.innerIndexPtr()[k] = ip; + dest.valuePtr()[k] = it.value(); + } + else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c)) + { + if(!StorageOrderMatch) + std::swap(ip,jp); + Index k = count[jp]++; + dest.innerIndexPtr()[k] = ip; + dest.valuePtr()[k] = it.value(); + k = count[ip]++; + dest.innerIndexPtr()[k] = jp; + dest.valuePtr()[k] = numext::conj(it.value()); + } + } + } +} + +template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder> +void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm) +{ + typedef typename MatrixType::StorageIndex StorageIndex; + typedef typename MatrixType::Scalar Scalar; + SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived()); + typedef Matrix<StorageIndex,Dynamic,1> VectorI; + typedef evaluator<MatrixType> MatEval; + typedef typename evaluator<MatrixType>::InnerIterator MatIterator; + + enum { + SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, + StorageOrderMatch = int(SrcOrder) == int(DstOrder), + DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode, + SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode + }; + + MatEval matEval(mat); + + Index size = mat.rows(); + VectorI count(size); + count.setZero(); + dest.resize(size,size); + for(StorageIndex j = 0; j<size; ++j) + { + StorageIndex jp = perm ? perm[j] : j; + for(MatIterator it(matEval,j); it; ++it) + { + StorageIndex i = it.index(); + if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j)) + continue; + + StorageIndex ip = perm ? perm[i] : i; + count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; + } + } + dest.outerIndexPtr()[0] = 0; + for(Index j=0; j<size; ++j) + dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; + dest.resizeNonZeros(dest.outerIndexPtr()[size]); + for(Index j=0; j<size; ++j) + count[j] = dest.outerIndexPtr()[j]; + + for(StorageIndex j = 0; j<size; ++j) + { + + for(MatIterator it(matEval,j); it; ++it) + { + StorageIndex i = it.index(); + if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j)) + continue; + + StorageIndex jp = perm ? perm[j] : j; + StorageIndex ip = perm? perm[i] : i; + + Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; + dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); + + if(!StorageOrderMatch) std::swap(ip,jp); + if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp))) + dest.valuePtr()[k] = numext::conj(it.value()); + else + dest.valuePtr()[k] = it.value(); + } + } +} + +} + +// TODO implement twists in a more evaluator friendly fashion + +namespace internal { + +template<typename MatrixType, int Mode> +struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> { +}; + +} + +template<typename MatrixType,int Mode> +class SparseSymmetricPermutationProduct + : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> > +{ + public: + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + enum { + RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime, + ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime + }; + protected: + typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm; + public: + typedef Matrix<StorageIndex,Dynamic,1> VectorI; + typedef typename MatrixType::Nested MatrixTypeNested; + typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression; + + SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) + : m_matrix(mat), m_perm(perm) + {} + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + const NestedExpression& matrix() const { return m_matrix; } + const Perm& perm() const { return m_perm; } + + protected: + MatrixTypeNested m_matrix; + const Perm& m_perm; + +}; + +namespace internal { + +template<typename DstXprType, typename MatrixType, int Mode, typename Scalar> +struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse> +{ + typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType; + typedef typename DstXprType::StorageIndex DstIndex; + template<int Options> + static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &) + { + // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data()); + SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp; + internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data()); + dst = tmp; + } + + template<typename DestType,unsigned int DestMode> + static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &) + { + internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data()); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H |