summaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCore/SparseSelfAdjointView.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SparseCore/SparseSelfAdjointView.h')
-rw-r--r--Eigen/src/SparseCore/SparseSelfAdjointView.h659
1 files changed, 659 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/SparseSelfAdjointView.h b/Eigen/src/SparseCore/SparseSelfAdjointView.h
new file mode 100644
index 0000000..85b00e1
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseSelfAdjointView.h
@@ -0,0 +1,659 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
+#define EIGEN_SPARSE_SELFADJOINTVIEW_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ * \class SparseSelfAdjointView
+ *
+ * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
+ *
+ * \param MatrixType the type of the dense matrix storing the coefficients
+ * \param Mode can be either \c #Lower or \c #Upper
+ *
+ * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
+ * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
+ * and most of the time this is the only way that it is used.
+ *
+ * \sa SparseMatrixBase::selfadjointView()
+ */
+namespace internal {
+
+template<typename MatrixType, unsigned int Mode>
+struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
+};
+
+template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
+void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
+
+template<int Mode,typename MatrixType,int DestOrder>
+void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
+
+}
+
+template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
+ : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
+{
+ public:
+
+ enum {
+ Mode = _Mode,
+ TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
+ RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
+ ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
+ };
+
+ typedef EigenBase<SparseSelfAdjointView> Base;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
+ typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
+
+ explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
+ {
+ eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
+ }
+
+ inline Index rows() const { return m_matrix.rows(); }
+ inline Index cols() const { return m_matrix.cols(); }
+
+ /** \internal \returns a reference to the nested matrix */
+ const _MatrixTypeNested& matrix() const { return m_matrix; }
+ typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
+
+ /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
+ *
+ * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
+ * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
+ */
+ template<typename OtherDerived>
+ Product<SparseSelfAdjointView, OtherDerived>
+ operator*(const SparseMatrixBase<OtherDerived>& rhs) const
+ {
+ return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
+ }
+
+ /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
+ *
+ * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
+ * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
+ */
+ template<typename OtherDerived> friend
+ Product<OtherDerived, SparseSelfAdjointView>
+ operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
+ {
+ return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
+ }
+
+ /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
+ template<typename OtherDerived>
+ Product<SparseSelfAdjointView,OtherDerived>
+ operator*(const MatrixBase<OtherDerived>& rhs) const
+ {
+ return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
+ }
+
+ /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
+ template<typename OtherDerived> friend
+ Product<OtherDerived,SparseSelfAdjointView>
+ operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
+ {
+ return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
+ }
+
+ /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
+ * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
+ *
+ * \returns a reference to \c *this
+ *
+ * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
+ * call this function with u.adjoint().
+ */
+ template<typename DerivedU>
+ SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
+
+ /** \returns an expression of P H P^-1 */
+ // TODO implement twists in a more evaluator friendly fashion
+ SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
+ {
+ return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
+ }
+
+ template<typename SrcMatrixType,int SrcMode>
+ SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
+ {
+ internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
+ return *this;
+ }
+
+ SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
+ {
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
+ return *this = src.twistedBy(pnull);
+ }
+
+ // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor
+ EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView)
+
+ template<typename SrcMatrixType,unsigned int SrcMode>
+ SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
+ {
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
+ return *this = src.twistedBy(pnull);
+ }
+
+ void resize(Index rows, Index cols)
+ {
+ EIGEN_ONLY_USED_FOR_DEBUG(rows);
+ EIGEN_ONLY_USED_FOR_DEBUG(cols);
+ eigen_assert(rows == this->rows() && cols == this->cols()
+ && "SparseSelfadjointView::resize() does not actually allow to resize.");
+ }
+
+ protected:
+
+ MatrixTypeNested m_matrix;
+ //mutable VectorI m_countPerRow;
+ //mutable VectorI m_countPerCol;
+ private:
+ template<typename Dest> void evalTo(Dest &) const;
+};
+
+/***************************************************************************
+* Implementation of SparseMatrixBase methods
+***************************************************************************/
+
+template<typename Derived>
+template<unsigned int UpLo>
+typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
+{
+ return SparseSelfAdjointView<const Derived, UpLo>(derived());
+}
+
+template<typename Derived>
+template<unsigned int UpLo>
+typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
+{
+ return SparseSelfAdjointView<Derived, UpLo>(derived());
+}
+
+/***************************************************************************
+* Implementation of SparseSelfAdjointView methods
+***************************************************************************/
+
+template<typename MatrixType, unsigned int Mode>
+template<typename DerivedU>
+SparseSelfAdjointView<MatrixType,Mode>&
+SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
+{
+ SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
+ if(alpha==Scalar(0))
+ m_matrix = tmp.template triangularView<Mode>();
+ else
+ m_matrix += alpha * tmp.template triangularView<Mode>();
+
+ return *this;
+}
+
+namespace internal {
+
+// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
+// in the future selfadjoint-ness should be defined by the expression traits
+// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef SparseSelfAdjointShape Shape;
+};
+
+struct SparseSelfAdjoint2Sparse {};
+
+template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
+template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
+
+template< typename DstXprType, typename SrcXprType, typename Functor>
+struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
+{
+ typedef typename DstXprType::StorageIndex StorageIndex;
+ typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
+
+ template<typename DestScalar,int StorageOrder>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
+ {
+ internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
+ }
+
+ // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
+ template<typename DestScalar,int StorageOrder,typename AssignFunc>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
+ {
+ SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
+ run(tmp, src, AssignOpType());
+ call_assignment_no_alias_no_transpose(dst, tmp, func);
+ }
+
+ template<typename DestScalar,int StorageOrder>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
+ const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
+ {
+ SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
+ run(tmp, src, AssignOpType());
+ dst += tmp;
+ }
+
+ template<typename DestScalar,int StorageOrder>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
+ const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
+ {
+ SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
+ run(tmp, src, AssignOpType());
+ dst -= tmp;
+ }
+
+ template<typename DestScalar>
+ static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
+ {
+ // TODO directly evaluate into dst;
+ SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
+ internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
+ dst = tmp;
+ }
+};
+
+} // end namespace internal
+
+/***************************************************************************
+* Implementation of sparse self-adjoint time dense matrix
+***************************************************************************/
+
+namespace internal {
+
+template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
+inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
+{
+ EIGEN_ONLY_USED_FOR_DEBUG(alpha);
+
+ typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
+ typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
+ typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
+ typedef typename LhsEval::InnerIterator LhsIterator;
+ typedef typename SparseLhsType::Scalar LhsScalar;
+
+ enum {
+ LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
+ ProcessFirstHalf =
+ ((Mode&(Upper|Lower))==(Upper|Lower))
+ || ( (Mode&Upper) && !LhsIsRowMajor)
+ || ( (Mode&Lower) && LhsIsRowMajor),
+ ProcessSecondHalf = !ProcessFirstHalf
+ };
+
+ SparseLhsTypeNested lhs_nested(lhs);
+ LhsEval lhsEval(lhs_nested);
+
+ // work on one column at once
+ for (Index k=0; k<rhs.cols(); ++k)
+ {
+ for (Index j=0; j<lhs.outerSize(); ++j)
+ {
+ LhsIterator i(lhsEval,j);
+ // handle diagonal coeff
+ if (ProcessSecondHalf)
+ {
+ while (i && i.index()<j) ++i;
+ if(i && i.index()==j)
+ {
+ res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
+ ++i;
+ }
+ }
+
+ // premultiplied rhs for scatters
+ typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
+ // accumulator for partial scalar product
+ typename DenseResType::Scalar res_j(0);
+ for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
+ {
+ LhsScalar lhs_ij = i.value();
+ if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
+ res_j += lhs_ij * rhs.coeff(i.index(),k);
+ res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
+ }
+ res.coeffRef(j,k) += alpha * res_j;
+
+ // handle diagonal coeff
+ if (ProcessFirstHalf && i && (i.index()==j))
+ res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
+ }
+ }
+}
+
+
+template<typename LhsView, typename Rhs, int ProductType>
+struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
+: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
+{
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
+ {
+ typedef typename LhsView::_MatrixTypeNested Lhs;
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhsView.matrix());
+ RhsNested rhsNested(rhs);
+
+ internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
+ }
+};
+
+template<typename Lhs, typename RhsView, int ProductType>
+struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
+: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
+{
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
+ {
+ typedef typename RhsView::_MatrixTypeNested Rhs;
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhsView.matrix());
+
+ // transpose everything
+ Transpose<Dest> dstT(dst);
+ internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
+ }
+};
+
+// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
+// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
+
+template<typename LhsView, typename Rhs, int ProductTag>
+struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
+ : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
+{
+ typedef Product<LhsView, Rhs, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
+ }
+
+protected:
+ typename Rhs::PlainObject m_lhs;
+ PlainObject m_result;
+};
+
+template<typename Lhs, typename RhsView, int ProductTag>
+struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
+ : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
+{
+ typedef Product<Lhs, RhsView, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
+ }
+
+protected:
+ typename Lhs::PlainObject m_rhs;
+ PlainObject m_result;
+};
+
+} // namespace internal
+
+/***************************************************************************
+* Implementation of symmetric copies and permutations
+***************************************************************************/
+namespace internal {
+
+template<int Mode,typename MatrixType,int DestOrder>
+void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
+{
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef evaluator<MatrixType> MatEval;
+ typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
+
+ MatEval matEval(mat);
+ Dest& dest(_dest.derived());
+ enum {
+ StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
+ };
+
+ Index size = mat.rows();
+ VectorI count;
+ count.resize(size);
+ count.setZero();
+ dest.resize(size,size);
+ for(Index j = 0; j<size; ++j)
+ {
+ Index jp = perm ? perm[j] : j;
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ Index i = it.index();
+ Index r = it.row();
+ Index c = it.col();
+ Index ip = perm ? perm[i] : i;
+ if(Mode==int(Upper|Lower))
+ count[StorageOrderMatch ? jp : ip]++;
+ else if(r==c)
+ count[ip]++;
+ else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
+ {
+ count[ip]++;
+ count[jp]++;
+ }
+ }
+ }
+ Index nnz = count.sum();
+
+ // reserve space
+ dest.resizeNonZeros(nnz);
+ dest.outerIndexPtr()[0] = 0;
+ for(Index j=0; j<size; ++j)
+ dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
+ for(Index j=0; j<size; ++j)
+ count[j] = dest.outerIndexPtr()[j];
+
+ // copy data
+ for(StorageIndex j = 0; j<size; ++j)
+ {
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ StorageIndex i = internal::convert_index<StorageIndex>(it.index());
+ Index r = it.row();
+ Index c = it.col();
+
+ StorageIndex jp = perm ? perm[j] : j;
+ StorageIndex ip = perm ? perm[i] : i;
+
+ if(Mode==int(Upper|Lower))
+ {
+ Index k = count[StorageOrderMatch ? jp : ip]++;
+ dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
+ dest.valuePtr()[k] = it.value();
+ }
+ else if(r==c)
+ {
+ Index k = count[ip]++;
+ dest.innerIndexPtr()[k] = ip;
+ dest.valuePtr()[k] = it.value();
+ }
+ else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
+ {
+ if(!StorageOrderMatch)
+ std::swap(ip,jp);
+ Index k = count[jp]++;
+ dest.innerIndexPtr()[k] = ip;
+ dest.valuePtr()[k] = it.value();
+ k = count[ip]++;
+ dest.innerIndexPtr()[k] = jp;
+ dest.valuePtr()[k] = numext::conj(it.value());
+ }
+ }
+ }
+}
+
+template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
+void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
+{
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef typename MatrixType::Scalar Scalar;
+ SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef evaluator<MatrixType> MatEval;
+ typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
+
+ enum {
+ SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
+ StorageOrderMatch = int(SrcOrder) == int(DstOrder),
+ DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
+ SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
+ };
+
+ MatEval matEval(mat);
+
+ Index size = mat.rows();
+ VectorI count(size);
+ count.setZero();
+ dest.resize(size,size);
+ for(StorageIndex j = 0; j<size; ++j)
+ {
+ StorageIndex jp = perm ? perm[j] : j;
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ StorageIndex i = it.index();
+ if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
+ continue;
+
+ StorageIndex ip = perm ? perm[i] : i;
+ count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
+ }
+ }
+ dest.outerIndexPtr()[0] = 0;
+ for(Index j=0; j<size; ++j)
+ dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
+ dest.resizeNonZeros(dest.outerIndexPtr()[size]);
+ for(Index j=0; j<size; ++j)
+ count[j] = dest.outerIndexPtr()[j];
+
+ for(StorageIndex j = 0; j<size; ++j)
+ {
+
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ StorageIndex i = it.index();
+ if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
+ continue;
+
+ StorageIndex jp = perm ? perm[j] : j;
+ StorageIndex ip = perm? perm[i] : i;
+
+ Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
+ dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
+
+ if(!StorageOrderMatch) std::swap(ip,jp);
+ if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
+ dest.valuePtr()[k] = numext::conj(it.value());
+ else
+ dest.valuePtr()[k] = it.value();
+ }
+ }
+}
+
+}
+
+// TODO implement twists in a more evaluator friendly fashion
+
+namespace internal {
+
+template<typename MatrixType, int Mode>
+struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
+};
+
+}
+
+template<typename MatrixType,int Mode>
+class SparseSymmetricPermutationProduct
+ : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
+{
+ public:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ enum {
+ RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
+ ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
+ };
+ protected:
+ typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
+ public:
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef typename MatrixType::Nested MatrixTypeNested;
+ typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
+
+ SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
+ : m_matrix(mat), m_perm(perm)
+ {}
+
+ inline Index rows() const { return m_matrix.rows(); }
+ inline Index cols() const { return m_matrix.cols(); }
+
+ const NestedExpression& matrix() const { return m_matrix; }
+ const Perm& perm() const { return m_perm; }
+
+ protected:
+ MatrixTypeNested m_matrix;
+ const Perm& m_perm;
+
+};
+
+namespace internal {
+
+template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
+struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
+{
+ typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
+ typedef typename DstXprType::StorageIndex DstIndex;
+ template<int Options>
+ static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
+ {
+ // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
+ SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
+ internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
+ dst = tmp;
+ }
+
+ template<typename DestType,unsigned int DestMode>
+ static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
+ {
+ internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H