summaryrefslogtreecommitdiff
path: root/engine-ocean/Eigen/src/Core/arch/AVX
diff options
context:
space:
mode:
Diffstat (limited to 'engine-ocean/Eigen/src/Core/arch/AVX')
-rw-r--r--engine-ocean/Eigen/src/Core/arch/AVX/Complex.h372
-rw-r--r--engine-ocean/Eigen/src/Core/arch/AVX/MathFunctions.h228
-rw-r--r--engine-ocean/Eigen/src/Core/arch/AVX/PacketMath.h1574
-rw-r--r--engine-ocean/Eigen/src/Core/arch/AVX/TypeCasting.h115
4 files changed, 2289 insertions, 0 deletions
diff --git a/engine-ocean/Eigen/src/Core/arch/AVX/Complex.h b/engine-ocean/Eigen/src/Core/arch/AVX/Complex.h
new file mode 100644
index 0000000..ab7bd6c
--- /dev/null
+++ b/engine-ocean/Eigen/src/Core/arch/AVX/Complex.h
@@ -0,0 +1,372 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_AVX_H
+#define EIGEN_COMPLEX_AVX_H
+
+namespace Eigen {
+
+namespace internal {
+
+//---------- float ----------
+struct Packet4cf
+{
+ EIGEN_STRONG_INLINE Packet4cf() {}
+ EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {}
+ __m256 v;
+};
+
+#ifndef EIGEN_VECTORIZE_AVX512
+template<> struct packet_traits<std::complex<float> > : default_packet_traits
+{
+ typedef Packet4cf type;
+ typedef Packet2cf half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 4,
+ HasHalfPacket = 1,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasSqrt = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+#endif
+
+template<> struct unpacket_traits<Packet4cf> {
+ typedef std::complex<float> type;
+ typedef Packet2cf half;
+ typedef Packet8f as_real;
+ enum {
+ size=4,
+ alignment=Aligned32,
+ vectorizable=true,
+ masked_load_available=false,
+ masked_store_available=false
+ };
+};
+
+template<> EIGEN_STRONG_INLINE Packet4cf padd<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_add_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet4cf psub<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_sub_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a)
+{
+ return Packet4cf(pnegate(a.v));
+}
+template<> EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a)
+{
+ const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000));
+ return Packet4cf(_mm256_xor_ps(a.v,mask));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4cf pmul<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
+{
+ __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v);
+ __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1)));
+ __m256 result = _mm256_addsub_ps(tmp1, tmp2);
+ return Packet4cf(result);
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet4cf pcmp_eq(const Packet4cf& a, const Packet4cf& b) {
+ __m256 eq = _mm256_cmp_ps(a.v, b.v, _CMP_EQ_OQ);
+ return Packet4cf(_mm256_and_ps(eq, _mm256_permute_ps(eq, 0xb1)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4cf ptrue<Packet4cf>(const Packet4cf& a) { return Packet4cf(ptrue(Packet8f(a.v))); }
+template<> EIGEN_STRONG_INLINE Packet4cf pand <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_and_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet4cf por <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_or_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet4cf pxor <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_xor_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet4cf pandnot<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_andnot_ps(b.v,a.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet4cf pload <Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload<Packet8f>(&numext::real_ref(*from))); }
+template<> EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu<Packet8f>(&numext::real_ref(*from))); }
+
+
+template<> EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(const std::complex<float>& from)
+{
+ return Packet4cf(_mm256_castpd_ps(_mm256_broadcast_sd((const double*)(const void*)&from)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<float>* from)
+{
+ // FIXME The following might be optimized using _mm256_movedup_pd
+ Packet2cf a = ploaddup<Packet2cf>(from);
+ Packet2cf b = ploaddup<Packet2cf>(from+1);
+ return Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1));
+}
+
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, Index stride)
+{
+ return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]),
+ std::imag(from[2*stride]), std::real(from[2*stride]),
+ std::imag(from[1*stride]), std::real(from[1*stride]),
+ std::imag(from[0*stride]), std::real(from[0*stride])));
+}
+
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, Index stride)
+{
+ __m128 low = _mm256_extractf128_ps(from.v, 0);
+ to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)),
+ _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)));
+ to[stride*1] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)),
+ _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)));
+
+ __m128 high = _mm256_extractf128_ps(from.v, 1);
+ to[stride*2] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)),
+ _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)));
+ to[stride*3] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)),
+ _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)));
+
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet4cf>(const Packet4cf& a)
+{
+ return pfirst(Packet2cf(_mm256_castps256_ps128(a.v)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) {
+ __m128 low = _mm256_extractf128_ps(a.v, 0);
+ __m128 high = _mm256_extractf128_ps(a.v, 1);
+ __m128d lowd = _mm_castps_pd(low);
+ __m128d highd = _mm_castps_pd(high);
+ low = _mm_castpd_ps(_mm_shuffle_pd(lowd,lowd,0x1));
+ high = _mm_castpd_ps(_mm_shuffle_pd(highd,highd,0x1));
+ __m256 result = _mm256_setzero_ps();
+ result = _mm256_insertf128_ps(result, low, 1);
+ result = _mm256_insertf128_ps(result, high, 0);
+ return Packet4cf(result);
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet4cf>(const Packet4cf& a)
+{
+ return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v,0)),
+ Packet2cf(_mm256_extractf128_ps(a.v,1))));
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(const Packet4cf& a)
+{
+ return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)),
+ Packet2cf(_mm256_extractf128_ps(a.v, 1))));
+}
+
+EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f)
+
+template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
+{
+ Packet4cf num = pmul(a, pconj(b));
+ __m256 tmp = _mm256_mul_ps(b.v, b.v);
+ __m256 tmp2 = _mm256_shuffle_ps(tmp,tmp,0xB1);
+ __m256 denom = _mm256_add_ps(tmp, tmp2);
+ return Packet4cf(_mm256_div_ps(num.v, denom));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(const Packet4cf& x)
+{
+ return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1)));
+}
+
+//---------- double ----------
+struct Packet2cd
+{
+ EIGEN_STRONG_INLINE Packet2cd() {}
+ EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {}
+ __m256d v;
+};
+
+#ifndef EIGEN_VECTORIZE_AVX512
+template<> struct packet_traits<std::complex<double> > : default_packet_traits
+{
+ typedef Packet2cd type;
+ typedef Packet1cd half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 0,
+ size = 2,
+ HasHalfPacket = 1,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasSqrt = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+#endif
+
+template<> struct unpacket_traits<Packet2cd> {
+ typedef std::complex<double> type;
+ typedef Packet1cd half;
+ typedef Packet4d as_real;
+ enum {
+ size=2,
+ alignment=Aligned32,
+ vectorizable=true,
+ masked_load_available=false,
+ masked_store_available=false
+ };
+};
+
+template<> EIGEN_STRONG_INLINE Packet2cd padd<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_add_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cd psub<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_sub_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) { return Packet2cd(pnegate(a.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a)
+{
+ const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0));
+ return Packet2cd(_mm256_xor_pd(a.v,mask));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cd pmul<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
+{
+ __m256d tmp1 = _mm256_shuffle_pd(a.v,a.v,0x0);
+ __m256d even = _mm256_mul_pd(tmp1, b.v);
+ __m256d tmp2 = _mm256_shuffle_pd(a.v,a.v,0xF);
+ __m256d tmp3 = _mm256_shuffle_pd(b.v,b.v,0x5);
+ __m256d odd = _mm256_mul_pd(tmp2, tmp3);
+ return Packet2cd(_mm256_addsub_pd(even, odd));
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet2cd pcmp_eq(const Packet2cd& a, const Packet2cd& b) {
+ __m256d eq = _mm256_cmp_pd(a.v, b.v, _CMP_EQ_OQ);
+ return Packet2cd(pand(eq, _mm256_permute_pd(eq, 0x5)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cd ptrue<Packet2cd>(const Packet2cd& a) { return Packet2cd(ptrue(Packet4d(a.v))); }
+template<> EIGEN_STRONG_INLINE Packet2cd pand <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_and_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cd por <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_or_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cd pxor <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_xor_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cd pandnot<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_andnot_pd(b.v,a.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet2cd pload <Packet2cd>(const std::complex<double>* from)
+{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload<Packet4d>((const double*)from)); }
+template<> EIGEN_STRONG_INLINE Packet2cd ploadu<Packet2cd>(const std::complex<double>* from)
+{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu<Packet4d>((const double*)from)); }
+
+template<> EIGEN_STRONG_INLINE Packet2cd pset1<Packet2cd>(const std::complex<double>& from)
+{
+ // in case casting to a __m128d* is really not safe, then we can still fallback to this version: (much slower though)
+// return Packet2cd(_mm256_loadu2_m128d((const double*)&from,(const double*)&from));
+ return Packet2cd(_mm256_broadcast_pd((const __m128d*)(const void*)&from));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<double>* from) { return pset1<Packet2cd>(*from); }
+
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, Index stride)
+{
+ return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]),
+ std::imag(from[0*stride]), std::real(from[0*stride])));
+}
+
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, Index stride)
+{
+ __m128d low = _mm256_extractf128_pd(from.v, 0);
+ to[stride*0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));
+ __m128d high = _mm256_extractf128_pd(from.v, 1);
+ to[stride*1] = std::complex<double>(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)));
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet2cd>(const Packet2cd& a)
+{
+ __m128d low = _mm256_extractf128_pd(a.v, 0);
+ EIGEN_ALIGN16 double res[2];
+ _mm_store_pd(res, low);
+ return std::complex<double>(res[0],res[1]);
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) {
+ __m256d result = _mm256_permute2f128_pd(a.v, a.v, 1);
+ return Packet2cd(result);
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet2cd>(const Packet2cd& a)
+{
+ return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v,0)),
+ Packet1cd(_mm256_extractf128_pd(a.v,1))));
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet2cd>(const Packet2cd& a)
+{
+ return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v,0)),
+ Packet1cd(_mm256_extractf128_pd(a.v,1))));
+}
+
+EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d)
+
+template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
+{
+ Packet2cd num = pmul(a, pconj(b));
+ __m256d tmp = _mm256_mul_pd(b.v, b.v);
+ __m256d denom = _mm256_hadd_pd(tmp, tmp);
+ return Packet2cd(_mm256_div_pd(num.v, denom));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(const Packet2cd& x)
+{
+ return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5));
+}
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet4cf,4>& kernel) {
+ __m256d P0 = _mm256_castps_pd(kernel.packet[0].v);
+ __m256d P1 = _mm256_castps_pd(kernel.packet[1].v);
+ __m256d P2 = _mm256_castps_pd(kernel.packet[2].v);
+ __m256d P3 = _mm256_castps_pd(kernel.packet[3].v);
+
+ __m256d T0 = _mm256_shuffle_pd(P0, P1, 15);
+ __m256d T1 = _mm256_shuffle_pd(P0, P1, 0);
+ __m256d T2 = _mm256_shuffle_pd(P2, P3, 15);
+ __m256d T3 = _mm256_shuffle_pd(P2, P3, 0);
+
+ kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32));
+ kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49));
+ kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32));
+ kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49));
+}
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet2cd,2>& kernel) {
+ __m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0+(2<<4));
+ kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1+(3<<4));
+ kernel.packet[0].v = tmp;
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cd psqrt<Packet2cd>(const Packet2cd& a) {
+ return psqrt_complex<Packet2cd>(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet4cf psqrt<Packet4cf>(const Packet4cf& a) {
+ return psqrt_complex<Packet4cf>(a);
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_AVX_H
diff --git a/engine-ocean/Eigen/src/Core/arch/AVX/MathFunctions.h b/engine-ocean/Eigen/src/Core/arch/AVX/MathFunctions.h
new file mode 100644
index 0000000..67041c8
--- /dev/null
+++ b/engine-ocean/Eigen/src/Core/arch/AVX/MathFunctions.h
@@ -0,0 +1,228 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
+#define EIGEN_MATH_FUNCTIONS_AVX_H
+
+/* The sin and cos functions of this file are loosely derived from
+ * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
+ */
+
+namespace Eigen {
+
+namespace internal {
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+psin<Packet8f>(const Packet8f& _x) {
+ return psin_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+pcos<Packet8f>(const Packet8f& _x) {
+ return pcos_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+plog<Packet8f>(const Packet8f& _x) {
+ return plog_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
+plog<Packet4d>(const Packet4d& _x) {
+ return plog_double(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+plog2<Packet8f>(const Packet8f& _x) {
+ return plog2_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
+plog2<Packet4d>(const Packet4d& _x) {
+ return plog2_double(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f plog1p<Packet8f>(const Packet8f& _x) {
+ return generic_plog1p(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
+ return generic_expm1(_x);
+}
+
+// Exponential function. Works by writing "x = m*log(2) + r" where
+// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
+// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+pexp<Packet8f>(const Packet8f& _x) {
+ return pexp_float(_x);
+}
+
+// Hyperbolic Tangent function.
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+ptanh<Packet8f>(const Packet8f& _x) {
+ return internal::generic_fast_tanh_float(_x);
+}
+
+// Exponential function for doubles.
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
+pexp<Packet4d>(const Packet4d& _x) {
+ return pexp_double(_x);
+}
+
+// Functions for sqrt.
+// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
+// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
+// exact solution. It does not handle +inf, or denormalized numbers correctly.
+// The main advantage of this approach is not just speed, but also the fact that
+// it can be inlined and pipelined with other computations, further reducing its
+// effective latency. This is similar to Quake3's fast inverse square root.
+// For detail see here: http://www.beyond3d.com/content/articles/8/
+#if EIGEN_FAST_MATH
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f psqrt<Packet8f>(const Packet8f& _x) {
+ Packet8f minus_half_x = pmul(_x, pset1<Packet8f>(-0.5f));
+ Packet8f denormal_mask = pandnot(
+ pcmp_lt(_x, pset1<Packet8f>((std::numeric_limits<float>::min)())),
+ pcmp_lt(_x, pzero(_x)));
+
+ // Compute approximate reciprocal sqrt.
+ Packet8f x = _mm256_rsqrt_ps(_x);
+ // Do a single step of Newton's iteration.
+ x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1<Packet8f>(1.5f)));
+ // Flush results for denormals to zero.
+ return pandnot(pmul(_x,x), denormal_mask);
+}
+
+#else
+
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f psqrt<Packet8f>(const Packet8f& _x) {
+ return _mm256_sqrt_ps(_x);
+}
+
+#endif
+
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4d psqrt<Packet4d>(const Packet4d& _x) {
+ return _mm256_sqrt_pd(_x);
+}
+
+#if EIGEN_FAST_MATH
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
+ _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
+ _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
+ _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
+ _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
+
+ Packet8f neg_half = pmul(_x, p8f_minus_half);
+
+ // select only the inverse sqrt of positive normal inputs (denormals are
+ // flushed to zero and cause infs as well).
+ Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
+ Packet8f inf_mask = _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ);
+ Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask);
+
+ // Compute an approximate result using the rsqrt intrinsic.
+ Packet8f y_approx = _mm256_rsqrt_ps(_x);
+
+ // Do a single step of Newton-Raphson iteration to improve the approximation.
+ // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
+ // It is essential to evaluate the inner term like this because forming
+ // y_n^2 may over- or underflow.
+ Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five));
+
+ // Select the result of the Newton-Raphson step for positive normal arguments.
+ // For other arguments, choose the output of the intrinsic. This will
+ // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
+ // x is zero or a positive denormalized float (equivalent to flushing positive
+ // denormalized inputs to zero).
+ return pselect<Packet8f>(not_normal_finite_mask, y_approx, y_newton);
+}
+
+#else
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
+ _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
+ return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(_x));
+}
+#endif
+
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4d prsqrt<Packet4d>(const Packet4d& _x) {
+ _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
+ return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(_x));
+}
+
+F16_PACKET_FUNCTION(Packet8f, Packet8h, psin)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, plog)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt)
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) {
+ Packet8f fexponent;
+ const Packet8h out = float2half(pfrexp<Packet8f>(half2float(a), fexponent));
+ exponent = float2half(fexponent);
+ return out;
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h& a, const Packet8h& exponent) {
+ return float2half(pldexp<Packet8f>(half2float(a), half2float(exponent)));
+}
+
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt)
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) {
+ Packet8f fexponent;
+ const Packet8bf out = F32ToBf16(pfrexp<Packet8f>(Bf16ToF32(a), fexponent));
+ exponent = F32ToBf16(fexponent);
+ return out;
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pldexp(const Packet8bf& a, const Packet8bf& exponent) {
+ return F32ToBf16(pldexp<Packet8f>(Bf16ToF32(a), Bf16ToF32(exponent)));
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATH_FUNCTIONS_AVX_H
diff --git a/engine-ocean/Eigen/src/Core/arch/AVX/PacketMath.h b/engine-ocean/Eigen/src/Core/arch/AVX/PacketMath.h
new file mode 100644
index 0000000..7fc32fd
--- /dev/null
+++ b/engine-ocean/Eigen/src/Core/arch/AVX/PacketMath.h
@@ -0,0 +1,1574 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_PACKET_MATH_AVX_H
+#define EIGEN_PACKET_MATH_AVX_H
+
+namespace Eigen {
+
+namespace internal {
+
+#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
+#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
+#endif
+
+#if !defined(EIGEN_VECTORIZE_AVX512) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS)
+#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
+#endif
+
+#ifdef EIGEN_VECTORIZE_FMA
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#endif
+#endif
+
+typedef __m256 Packet8f;
+typedef __m256i Packet8i;
+typedef __m256d Packet4d;
+typedef eigen_packet_wrapper<__m128i, 2> Packet8h;
+typedef eigen_packet_wrapper<__m128i, 3> Packet8bf;
+
+template<> struct is_arithmetic<__m256> { enum { value = true }; };
+template<> struct is_arithmetic<__m256i> { enum { value = true }; };
+template<> struct is_arithmetic<__m256d> { enum { value = true }; };
+template<> struct is_arithmetic<Packet8h> { enum { value = true }; };
+template<> struct is_arithmetic<Packet8bf> { enum { value = true }; };
+
+#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \
+ const Packet8f p8f_##NAME = pset1<Packet8f>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \
+ const Packet4d p4d_##NAME = pset1<Packet4d>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \
+ const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X))
+
+#define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \
+ const Packet8i p8i_##NAME = pset1<Packet8i>(X)
+
+// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going
+// to leverage AVX512 instructions.
+#ifndef EIGEN_VECTORIZE_AVX512
+template<> struct packet_traits<float> : default_packet_traits
+{
+ typedef Packet8f type;
+ typedef Packet4f half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 8,
+ HasHalfPacket = 1,
+
+ HasCmp = 1,
+ HasDiv = 1,
+ HasSin = EIGEN_FAST_MATH,
+ HasCos = EIGEN_FAST_MATH,
+ HasLog = 1,
+ HasLog1p = 1,
+ HasExpm1 = 1,
+ HasExp = 1,
+ HasNdtri = 1,
+ HasBessel = 1,
+ HasSqrt = 1,
+ HasRsqrt = 1,
+ HasTanh = EIGEN_FAST_MATH,
+ HasErf = EIGEN_FAST_MATH,
+ HasBlend = 1,
+ HasRound = 1,
+ HasFloor = 1,
+ HasCeil = 1,
+ HasRint = 1
+ };
+};
+template<> struct packet_traits<double> : default_packet_traits
+{
+ typedef Packet4d type;
+ typedef Packet2d half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size=4,
+ HasHalfPacket = 1,
+
+ HasCmp = 1,
+ HasDiv = 1,
+ HasLog = 1,
+ HasExp = 1,
+ HasSqrt = 1,
+ HasRsqrt = 1,
+ HasBlend = 1,
+ HasRound = 1,
+ HasFloor = 1,
+ HasCeil = 1,
+ HasRint = 1
+ };
+};
+
+template <>
+struct packet_traits<Eigen::half> : default_packet_traits {
+ typedef Packet8h type;
+ // There is no half-size packet for Packet8h.
+ typedef Packet8h half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 8,
+ HasHalfPacket = 0,
+
+ HasCmp = 1,
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasSin = EIGEN_FAST_MATH,
+ HasCos = EIGEN_FAST_MATH,
+ HasNegate = 1,
+ HasAbs = 1,
+ HasAbs2 = 0,
+ HasMin = 1,
+ HasMax = 1,
+ HasConj = 1,
+ HasSetLinear = 0,
+ HasLog = 1,
+ HasLog1p = 1,
+ HasExpm1 = 1,
+ HasExp = 1,
+ HasSqrt = 1,
+ HasRsqrt = 1,
+ HasTanh = EIGEN_FAST_MATH,
+ HasErf = EIGEN_FAST_MATH,
+ HasBlend = 0,
+ HasRound = 1,
+ HasFloor = 1,
+ HasCeil = 1,
+ HasRint = 1,
+ HasBessel = 1,
+ HasNdtri = 1
+ };
+};
+
+template <>
+struct packet_traits<bfloat16> : default_packet_traits {
+ typedef Packet8bf type;
+ // There is no half-size packet for current Packet8bf.
+ // TODO: support as SSE path.
+ typedef Packet8bf half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 8,
+ HasHalfPacket = 0,
+
+ HasCmp = 1,
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasSin = EIGEN_FAST_MATH,
+ HasCos = EIGEN_FAST_MATH,
+ HasNegate = 1,
+ HasAbs = 1,
+ HasAbs2 = 0,
+ HasMin = 1,
+ HasMax = 1,
+ HasConj = 1,
+ HasSetLinear = 0,
+ HasLog = 1,
+ HasLog1p = 1,
+ HasExpm1 = 1,
+ HasExp = 1,
+ HasSqrt = 1,
+ HasRsqrt = 1,
+ HasTanh = EIGEN_FAST_MATH,
+ HasErf = EIGEN_FAST_MATH,
+ HasBlend = 0,
+ HasRound = 1,
+ HasFloor = 1,
+ HasCeil = 1,
+ HasRint = 1,
+ HasBessel = 1,
+ HasNdtri = 1
+ };
+};
+#endif
+
+template<> struct scalar_div_cost<float,true> { enum { value = 14 }; };
+template<> struct scalar_div_cost<double,true> { enum { value = 16 }; };
+
+/* Proper support for integers is only provided by AVX2. In the meantime, we'll
+ use SSE instructions and packets to deal with integers.
+template<> struct packet_traits<int> : default_packet_traits
+{
+ typedef Packet8i type;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size=8
+ };
+};
+*/
+
+template<> struct unpacket_traits<Packet8f> {
+ typedef float type;
+ typedef Packet4f half;
+ typedef Packet8i integer_packet;
+ typedef uint8_t mask_t;
+ enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true};
+};
+template<> struct unpacket_traits<Packet4d> {
+ typedef double type;
+ typedef Packet2d half;
+ enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false};
+};
+template<> struct unpacket_traits<Packet8i> { typedef int type; typedef Packet4i half; enum {size=8, alignment=Aligned32, vectorizable=false, masked_load_available=false, masked_store_available=false}; };
+template<> struct unpacket_traits<Packet8bf> { typedef bfloat16 type; typedef Packet8bf half; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; };
+
+// Helper function for bit packing snippet of low precision comparison.
+// It packs the flags from 16x16 to 8x16.
+EIGEN_STRONG_INLINE __m128i Pack16To8(Packet8f rf) {
+ return _mm_packs_epi32(_mm256_extractf128_si256(_mm256_castps_si256(rf), 0),
+ _mm256_extractf128_si256(_mm256_castps_si256(rf), 1));
+}
+
+
+template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float& from) { return _mm256_set1_ps(from); }
+template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); }
+template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int& from) { return _mm256_set1_epi32(from); }
+
+template<> EIGEN_STRONG_INLINE Packet8f pset1frombits<Packet8f>(unsigned int from) { return _mm256_castsi256_ps(pset1<Packet8i>(from)); }
+template<> EIGEN_STRONG_INLINE Packet4d pset1frombits<Packet4d>(uint64_t from) { return _mm256_castsi256_pd(_mm256_set1_epi64x(from)); }
+
+template<> EIGEN_STRONG_INLINE Packet8f pzero(const Packet8f& /*a*/) { return _mm256_setzero_ps(); }
+template<> EIGEN_STRONG_INLINE Packet4d pzero(const Packet4d& /*a*/) { return _mm256_setzero_pd(); }
+template<> EIGEN_STRONG_INLINE Packet8i pzero(const Packet8i& /*a*/) { return _mm256_setzero_si256(); }
+
+
+template<> EIGEN_STRONG_INLINE Packet8f peven_mask(const Packet8f& /*a*/) { return _mm256_castsi256_ps(_mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1)); }
+template<> EIGEN_STRONG_INLINE Packet8i peven_mask(const Packet8i& /*a*/) { return _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1); }
+template<> EIGEN_STRONG_INLINE Packet4d peven_mask(const Packet4d& /*a*/) { return _mm256_castsi256_pd(_mm256_set_epi32(0, 0, -1, -1, 0, 0, -1, -1)); }
+
+template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float* from) { return _mm256_broadcast_ss(from); }
+template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); }
+
+template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
+template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }
+
+template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i padd<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_add_epi32(a,b);
+#else
+ __m128i lo = _mm_add_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
+ __m128i hi = _mm_add_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i psub<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_sub_epi32(a,b);
+#else
+ __m128i lo = _mm_sub_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
+ __m128i hi = _mm_sub_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a)
+{
+ return _mm256_sub_ps(_mm256_set1_ps(0.0),a);
+}
+template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a)
+{
+ return _mm256_sub_pd(_mm256_set1_pd(0.0),a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; }
+template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; }
+template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i pmul<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_mullo_epi32(a,b);
+#else
+ const __m128i lo = _mm_mullo_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
+ const __m128i hi = _mm_mullo_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/)
+{ eigen_assert(false && "packet integer division are not supported by AVX");
+ return pset1<Packet8i>(0);
+}
+
+#ifdef EIGEN_VECTORIZE_FMA
+template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
+#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
+ // Clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
+ // and even register spilling with clang>=6.0 (bug 1637).
+ // Gcc stupidly generates a vfmadd132ps instruction.
+ // So let's enforce it to generate a vfmadd231ps instruction since the most common use
+ // case is to accumulate the result of the product.
+ Packet8f res = c;
+ __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
+ return res;
+#else
+ return _mm256_fmadd_ps(a,b,c);
+#endif
+}
+template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
+#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
+ // see above
+ Packet4d res = c;
+ __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
+ return res;
+#else
+ return _mm256_fmadd_pd(a,b,c);
+#endif
+}
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet8f pcmp_le(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LE_OQ); }
+template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LT_OQ); }
+template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt_or_nan(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a, b, _CMP_NGE_UQ); }
+template<> EIGEN_STRONG_INLINE Packet8f pcmp_eq(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_EQ_OQ); }
+
+template<> EIGEN_STRONG_INLINE Packet4d pcmp_le(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LE_OQ); }
+template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LT_OQ); }
+template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt_or_nan(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a, b, _CMP_NGE_UQ); }
+template<> EIGEN_STRONG_INLINE Packet4d pcmp_eq(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_EQ_OQ); }
+
+
+template<> EIGEN_STRONG_INLINE Packet8i pcmp_eq(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_cmpeq_epi32(a,b);
+#else
+ __m128i lo = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
+ __m128i hi = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) {
+#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
+ // There appears to be a bug in GCC, by which the optimizer may flip
+ // the argument order in calls to _mm_min_ps/_mm_max_ps, so we have to
+ // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
+ // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
+ Packet8f res;
+ asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
+ return res;
+#else
+ // Arguments are swapped to match NaN propagation behavior of std::min.
+ return _mm256_min_ps(b,a);
+#endif
+}
+template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) {
+#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
+ // See pmin above
+ Packet4d res;
+ asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
+ return res;
+#else
+ // Arguments are swapped to match NaN propagation behavior of std::min.
+ return _mm256_min_pd(b,a);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) {
+#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
+ // See pmin above
+ Packet8f res;
+ asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
+ return res;
+#else
+ // Arguments are swapped to match NaN propagation behavior of std::max.
+ return _mm256_max_ps(b,a);
+#endif
+}
+template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) {
+#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
+ // See pmin above
+ Packet4d res;
+ asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
+ return res;
+#else
+ // Arguments are swapped to match NaN propagation behavior of std::max.
+ return _mm256_max_pd(b,a);
+#endif
+}
+
+// Add specializations for min/max with prescribed NaN progation.
+template<>
+EIGEN_STRONG_INLINE Packet8f pmin<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) {
+ return pminmax_propagate_numbers(a, b, pmin<Packet8f>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet4d pmin<PropagateNumbers, Packet4d>(const Packet4d& a, const Packet4d& b) {
+ return pminmax_propagate_numbers(a, b, pmin<Packet4d>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet8f pmax<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) {
+ return pminmax_propagate_numbers(a, b, pmax<Packet8f>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet4d pmax<PropagateNumbers, Packet4d>(const Packet4d& a, const Packet4d& b) {
+ return pminmax_propagate_numbers(a, b, pmax<Packet4d>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet8f pmin<PropagateNaN, Packet8f>(const Packet8f& a, const Packet8f& b) {
+ return pminmax_propagate_nan(a, b, pmin<Packet8f>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet4d pmin<PropagateNaN, Packet4d>(const Packet4d& a, const Packet4d& b) {
+ return pminmax_propagate_nan(a, b, pmin<Packet4d>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet8f pmax<PropagateNaN, Packet8f>(const Packet8f& a, const Packet8f& b) {
+ return pminmax_propagate_nan(a, b, pmax<Packet8f>);
+}
+template<>
+EIGEN_STRONG_INLINE Packet4d pmax<PropagateNaN, Packet4d>(const Packet4d& a, const Packet4d& b) {
+ return pminmax_propagate_nan(a, b, pmax<Packet4d>);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f print<Packet8f>(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
+template<> EIGEN_STRONG_INLINE Packet4d print<Packet4d>(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); }
+
+template<> EIGEN_STRONG_INLINE Packet8f pceil<Packet8f>(const Packet8f& a) { return _mm256_ceil_ps(a); }
+template<> EIGEN_STRONG_INLINE Packet4d pceil<Packet4d>(const Packet4d& a) { return _mm256_ceil_pd(a); }
+
+template<> EIGEN_STRONG_INLINE Packet8f pfloor<Packet8f>(const Packet8f& a) { return _mm256_floor_ps(a); }
+template<> EIGEN_STRONG_INLINE Packet4d pfloor<Packet4d>(const Packet4d& a) { return _mm256_floor_pd(a); }
+
+
+template<> EIGEN_STRONG_INLINE Packet8i ptrue<Packet8i>(const Packet8i& a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ // vpcmpeqd has lower latency than the more general vcmpps
+ return _mm256_cmpeq_epi32(a,a);
+#else
+ const __m256 b = _mm256_castsi256_ps(a);
+ return _mm256_castps_si256(_mm256_cmp_ps(b,b,_CMP_TRUE_UQ));
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f ptrue<Packet8f>(const Packet8f& a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ // vpcmpeqd has lower latency than the more general vcmpps
+ const __m256i b = _mm256_castps_si256(a);
+ return _mm256_castsi256_ps(_mm256_cmpeq_epi32(b,b));
+#else
+ return _mm256_cmp_ps(a,a,_CMP_TRUE_UQ);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet4d ptrue<Packet4d>(const Packet4d& a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ // vpcmpeqq has lower latency than the more general vcmppd
+ const __m256i b = _mm256_castpd_si256(a);
+ return _mm256_castsi256_pd(_mm256_cmpeq_epi64(b,b));
+#else
+ return _mm256_cmp_pd(a,a,_CMP_TRUE_UQ);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i pand<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_and_si256(a,b);
+#else
+ return _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i por<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_or_si256(a,b);
+#else
+ return _mm256_castps_si256(_mm256_or_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet8i pxor<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_xor_si256(a,b);
+#else
+ return _mm256_castps_si256(_mm256_xor_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(b,a); }
+template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(b,a); }
+template<> EIGEN_STRONG_INLINE Packet8i pandnot<Packet8i>(const Packet8i& a, const Packet8i& b) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_andnot_si256(b,a);
+#else
+ return _mm256_castps_si256(_mm256_andnot_ps(_mm256_castsi256_ps(b),_mm256_castsi256_ps(a)));
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pround<Packet8f>(const Packet8f& a)
+{
+ const Packet8f mask = pset1frombits<Packet8f>(static_cast<numext::uint32_t>(0x80000000u));
+ const Packet8f prev0dot5 = pset1frombits<Packet8f>(static_cast<numext::uint32_t>(0x3EFFFFFFu));
+ return _mm256_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
+}
+template<> EIGEN_STRONG_INLINE Packet4d pround<Packet4d>(const Packet4d& a)
+{
+ const Packet4d mask = pset1frombits<Packet4d>(static_cast<numext::uint64_t>(0x8000000000000000ull));
+ const Packet4d prev0dot5 = pset1frombits<Packet4d>(static_cast<numext::uint64_t>(0x3FDFFFFFFFFFFFFFull));
+ return _mm256_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pselect<Packet8f>(const Packet8f& mask, const Packet8f& a, const Packet8f& b)
+{ return _mm256_blendv_ps(b,a,mask); }
+template<> EIGEN_STRONG_INLINE Packet4d pselect<Packet4d>(const Packet4d& mask, const Packet4d& a, const Packet4d& b)
+{ return _mm256_blendv_pd(b,a,mask); }
+
+template<int N> EIGEN_STRONG_INLINE Packet8i parithmetic_shift_right(Packet8i a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_srai_epi32(a, N);
+#else
+ __m128i lo = _mm_srai_epi32(_mm256_extractf128_si256(a, 0), N);
+ __m128i hi = _mm_srai_epi32(_mm256_extractf128_si256(a, 1), N);
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_right(Packet8i a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_srli_epi32(a, N);
+#else
+ __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(a, 0), N);
+ __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(a, 1), N);
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_left(Packet8i a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ return _mm256_slli_epi32(a, N);
+#else
+ __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(a, 0), N);
+ __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(a, 1), N);
+ return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); }
+template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); }
+template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); }
+
+template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); }
+template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); }
+template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); }
+
+template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from, uint8_t umask) {
+ Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
+ const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
+ mask = por<Packet8i>(mask, bit_mask);
+ mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
+ EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_maskload_ps(from, mask);
+}
+
+// Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3}
+template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from)
+{
+ // TODO try to find a way to avoid the need of a temporary register
+// Packet8f tmp = _mm256_castps128_ps256(_mm_loadu_ps(from));
+// tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1);
+// return _mm256_unpacklo_ps(tmp,tmp);
+
+ // _mm256_insertf128_ps is very slow on Haswell, thus:
+ Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from);
+ // mimic an "inplace" permutation of the lower 128bits using a blend
+ tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15);
+ // then we can perform a consistent permutation on the global register to get everything in shape:
+ return _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2));
+}
+// Loads 2 doubles from memory a returns the packet {a0, a0 a1, a1}
+template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from)
+{
+ Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from);
+ return _mm256_permute_pd(tmp, 3<<2);
+}
+
+// Loads 2 floats from memory a returns the packet {a0, a0 a0, a0, a1, a1, a1, a1}
+template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
+{
+ Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from));
+ return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1);
+}
+
+template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); }
+template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); }
+template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }
+
+template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); }
+template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); }
+template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }
+
+template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from, uint8_t umask) {
+ Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
+ const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
+ mask = por<Packet8i>(mask, bit_mask);
+ mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
+ EIGEN_DEBUG_UNALIGNED_STORE return _mm256_maskstore_ps(to, mask, from);
+}
+
+// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
+// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
+template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, Index stride)
+{
+ return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
+ from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
+}
+template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, Index stride)
+{
+ return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
+}
+
+template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride)
+{
+ __m128 low = _mm256_extractf128_ps(from, 0);
+ to[stride*0] = _mm_cvtss_f32(low);
+ to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1));
+ to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2));
+ to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3));
+
+ __m128 high = _mm256_extractf128_ps(from, 1);
+ to[stride*4] = _mm_cvtss_f32(high);
+ to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1));
+ to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
+ to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
+}
+template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, Index stride)
+{
+ __m128d low = _mm256_extractf128_pd(from, 0);
+ to[stride*0] = _mm_cvtsd_f64(low);
+ to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1));
+ __m128d high = _mm256_extractf128_pd(from, 1);
+ to[stride*2] = _mm_cvtsd_f64(high);
+ to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1));
+}
+
+template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a)
+{
+ Packet8f pa = pset1<Packet8f>(a);
+ pstore(to, pa);
+}
+template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a)
+{
+ Packet4d pa = pset1<Packet4d>(a);
+ pstore(to, pa);
+}
+template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a)
+{
+ Packet8i pa = pset1<Packet8i>(a);
+ pstore(to, pa);
+}
+
+#ifndef EIGEN_VECTORIZE_AVX512
+template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
+template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
+template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
+#endif
+
+template<> EIGEN_STRONG_INLINE float pfirst<Packet8f>(const Packet8f& a) {
+ return _mm_cvtss_f32(_mm256_castps256_ps128(a));
+}
+template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) {
+ return _mm_cvtsd_f64(_mm256_castpd256_pd128(a));
+}
+template<> EIGEN_STRONG_INLINE int pfirst<Packet8i>(const Packet8i& a) {
+ return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
+}
+
+
+template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a)
+{
+ __m256 tmp = _mm256_shuffle_ps(a,a,0x1b);
+ return _mm256_permute2f128_ps(tmp, tmp, 1);
+}
+template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
+{
+ __m256d tmp = _mm256_shuffle_pd(a,a,5);
+ return _mm256_permute2f128_pd(tmp, tmp, 1);
+ #if 0
+ // This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd
+ // exhibit the same latency/throughput, but it is here for future reference/benchmarking...
+ __m256d swap_halves = _mm256_permute2f128_pd(a,a,1);
+ return _mm256_permute_pd(swap_halves,5);
+ #endif
+}
+
+// pabs should be ok
+template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a)
+{
+ const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
+ return _mm256_and_ps(a,mask);
+}
+template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a)
+{
+ const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
+ return _mm256_and_pd(a,mask);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pfrexp<Packet8f>(const Packet8f& a, Packet8f& exponent) {
+ return pfrexp_generic(a,exponent);
+}
+
+// Extract exponent without existence of Packet4l.
+template<>
+EIGEN_STRONG_INLINE
+Packet4d pfrexp_generic_get_biased_exponent(const Packet4d& a) {
+ const Packet4d cst_exp_mask = pset1frombits<Packet4d>(static_cast<uint64_t>(0x7ff0000000000000ull));
+ __m256i a_expo = _mm256_castpd_si256(pand(a, cst_exp_mask));
+#ifdef EIGEN_VECTORIZE_AVX2
+ a_expo = _mm256_srli_epi64(a_expo, 52);
+ __m128i lo = _mm256_extractf128_si256(a_expo, 0);
+ __m128i hi = _mm256_extractf128_si256(a_expo, 1);
+#else
+ __m128i lo = _mm256_extractf128_si256(a_expo, 0);
+ __m128i hi = _mm256_extractf128_si256(a_expo, 1);
+ lo = _mm_srli_epi64(lo, 52);
+ hi = _mm_srli_epi64(hi, 52);
+#endif
+ Packet2d exponent_lo = _mm_cvtepi32_pd(vec4i_swizzle1(lo, 0, 2, 1, 3));
+ Packet2d exponent_hi = _mm_cvtepi32_pd(vec4i_swizzle1(hi, 0, 2, 1, 3));
+ Packet4d exponent = _mm256_insertf128_pd(_mm256_setzero_pd(), exponent_lo, 0);
+ exponent = _mm256_insertf128_pd(exponent, exponent_hi, 1);
+ return exponent;
+}
+
+
+template<> EIGEN_STRONG_INLINE Packet4d pfrexp<Packet4d>(const Packet4d& a, Packet4d& exponent) {
+ return pfrexp_generic(a, exponent);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pldexp<Packet8f>(const Packet8f& a, const Packet8f& exponent) {
+ return pldexp_generic(a, exponent);
+}
+
+template<> EIGEN_STRONG_INLINE Packet4d pldexp<Packet4d>(const Packet4d& a, const Packet4d& exponent) {
+ // Clamp exponent to [-2099, 2099]
+ const Packet4d max_exponent = pset1<Packet4d>(2099.0);
+ const Packet4i e = _mm256_cvtpd_epi32(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
+
+ // Split 2^e into four factors and multiply.
+ const Packet4i bias = pset1<Packet4i>(1023);
+ Packet4i b = parithmetic_shift_right<2>(e); // floor(e/4)
+
+ // 2^b
+ Packet4i hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3);
+ Packet4i lo = _mm_slli_epi64(hi, 52);
+ hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52);
+ Packet4d c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1));
+ Packet4d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b)
+
+ // 2^(e - 3b)
+ b = psub(psub(psub(e, b), b), b); // e - 3b
+ hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3);
+ lo = _mm_slli_epi64(hi, 52);
+ hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52);
+ c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1));
+ out = pmul(out, c); // a * 2^e
+ return out;
+}
+
+template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a)
+{
+ return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1))));
+}
+template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a)
+{
+ return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1))));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4f predux_half_dowto4<Packet8f>(const Packet8f& a)
+{
+ return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1));
+}
+
+template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a)
+{
+ Packet8f tmp;
+ tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1));
+ tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
+ return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
+}
+template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a)
+{
+ Packet4d tmp;
+ tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1));
+ return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1)));
+}
+
+template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a)
+{
+ Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1));
+ tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
+ return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
+}
+template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a)
+{
+ Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1));
+ return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
+}
+
+template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a)
+{
+ Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1));
+ tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
+ return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
+}
+
+template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
+{
+ Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1));
+ return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
+}
+
+// not needed yet
+// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet8f& x)
+// {
+// return _mm256_movemask_ps(x)==0xFF;
+// }
+
+template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x)
+{
+ return _mm256_movemask_ps(x)!=0;
+}
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet8f,8>& kernel) {
+ __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
+ __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
+ __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
+ __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
+ __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]);
+ __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]);
+ __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]);
+ __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]);
+ __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
+ __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
+ __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
+ __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
+ __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0));
+ __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2));
+ __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0));
+ __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2));
+ kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20);
+ kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20);
+ kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20);
+ kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20);
+ kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31);
+ kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31);
+ kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31);
+ kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31);
+}
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet8f,4>& kernel) {
+ __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
+ __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
+ __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
+ __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
+
+ __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
+ __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
+ __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
+ __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
+
+ kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20);
+ kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20);
+ kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31);
+ kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31);
+}
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet4d,4>& kernel) {
+ __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15);
+ __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0);
+ __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15);
+ __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0);
+
+ kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32);
+ kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49);
+ kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32);
+ kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) {
+ const __m256 zero = _mm256_setzero_ps();
+ const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
+ __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ);
+ return _mm256_blendv_ps(thenPacket, elsePacket, false_mask);
+}
+template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) {
+ const __m256d zero = _mm256_setzero_pd();
+ const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
+ __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ);
+ return _mm256_blendv_pd(thenPacket, elsePacket, false_mask);
+}
+
+// Packet math for Eigen::half
+
+template<> struct unpacket_traits<Packet8h> { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet8h half; };
+
+template<> EIGEN_STRONG_INLINE Packet8h pset1<Packet8h>(const Eigen::half& from) {
+ return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from));
+}
+
+template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet8h>(const Packet8h& from) {
+ return numext::bit_cast<Eigen::half>(static_cast<numext::uint16_t>(_mm_extract_epi16(from, 0)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pload<Packet8h>(const Eigen::half* from) {
+ return _mm_load_si128(reinterpret_cast<const __m128i*>(from));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h ploadu<Packet8h>(const Eigen::half* from) {
+ return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
+}
+
+template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet8h& from) {
+ _mm_store_si128(reinterpret_cast<__m128i*>(to), from);
+}
+
+template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet8h& from) {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h
+ploaddup<Packet8h>(const Eigen::half* from) {
+ const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
+ const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
+ const numext::uint16_t c = numext::bit_cast<numext::uint16_t>(from[2]);
+ const numext::uint16_t d = numext::bit_cast<numext::uint16_t>(from[3]);
+ return _mm_set_epi16(d, d, c, c, b, b, a, a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h
+ploadquad<Packet8h>(const Eigen::half* from) {
+ const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
+ const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
+ return _mm_set_epi16(b, b, b, b, a, a, a, a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h ptrue(const Packet8h& a) {
+ return _mm_cmpeq_epi32(a, a);
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pabs(const Packet8h& a) {
+ const __m128i sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
+ return _mm_andnot_si128(sign_mask, a);
+}
+
+EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) {
+#ifdef EIGEN_HAS_FP16_C
+ return _mm256_cvtph_ps(a);
+#else
+ EIGEN_ALIGN32 Eigen::half aux[8];
+ pstore(aux, a);
+ float f0(aux[0]);
+ float f1(aux[1]);
+ float f2(aux[2]);
+ float f3(aux[3]);
+ float f4(aux[4]);
+ float f5(aux[5]);
+ float f6(aux[6]);
+ float f7(aux[7]);
+
+ return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0);
+#endif
+}
+
+EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) {
+#ifdef EIGEN_HAS_FP16_C
+ return _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
+#else
+ EIGEN_ALIGN32 float aux[8];
+ pstore(aux, a);
+ const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[0]));
+ const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[1]));
+ const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[2]));
+ const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[3]));
+ const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[4]));
+ const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[5]));
+ const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[6]));
+ const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[7]));
+ return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
+#endif
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pmin<Packet8h>(const Packet8h& a,
+ const Packet8h& b) {
+ return float2half(pmin<Packet8f>(half2float(a), half2float(b)));
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pmax<Packet8h>(const Packet8h& a,
+ const Packet8h& b) {
+ return float2half(pmax<Packet8f>(half2float(a), half2float(b)));
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8h plset<Packet8h>(const half& a) {
+ return float2half(plset<Packet8f>(static_cast<float>(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h por(const Packet8h& a,const Packet8h& b) {
+ // in some cases Packet4i is a wrapper around __m128i, so we either need to
+ // cast to Packet4i to directly call the intrinsics as below:
+ return _mm_or_si128(a,b);
+}
+template<> EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h& a,const Packet8h& b) {
+ return _mm_xor_si128(a,b);
+}
+template<> EIGEN_STRONG_INLINE Packet8h pand(const Packet8h& a,const Packet8h& b) {
+ return _mm_and_si128(a,b);
+}
+template<> EIGEN_STRONG_INLINE Packet8h pandnot(const Packet8h& a,const Packet8h& b) {
+ return _mm_andnot_si128(b,a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pselect(const Packet8h& mask, const Packet8h& a, const Packet8h& b) {
+ return _mm_blendv_epi8(b, a, mask);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pround<Packet8h>(const Packet8h& a) {
+ return float2half(pround<Packet8f>(half2float(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h print<Packet8h>(const Packet8h& a) {
+ return float2half(print<Packet8f>(half2float(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pceil<Packet8h>(const Packet8h& a) {
+ return float2half(pceil<Packet8f>(half2float(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pfloor<Packet8h>(const Packet8h& a) {
+ return float2half(pfloor<Packet8f>(half2float(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pcmp_eq(const Packet8h& a,const Packet8h& b) {
+ return Pack16To8(pcmp_eq(half2float(a), half2float(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pcmp_le(const Packet8h& a,const Packet8h& b) {
+ return Pack16To8(pcmp_le(half2float(a), half2float(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt(const Packet8h& a,const Packet8h& b) {
+ return Pack16To8(pcmp_lt(half2float(a), half2float(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt_or_nan(const Packet8h& a,const Packet8h& b) {
+ return Pack16To8(pcmp_lt_or_nan(half2float(a), half2float(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE Packet8h pnegate(const Packet8h& a) {
+ Packet8h sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
+ return _mm_xor_si128(a, sign_mask);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h padd<Packet8h>(const Packet8h& a, const Packet8h& b) {
+ Packet8f af = half2float(a);
+ Packet8f bf = half2float(b);
+ Packet8f rf = padd(af, bf);
+ return float2half(rf);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h psub<Packet8h>(const Packet8h& a, const Packet8h& b) {
+ Packet8f af = half2float(a);
+ Packet8f bf = half2float(b);
+ Packet8f rf = psub(af, bf);
+ return float2half(rf);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pmul<Packet8h>(const Packet8h& a, const Packet8h& b) {
+ Packet8f af = half2float(a);
+ Packet8f bf = half2float(b);
+ Packet8f rf = pmul(af, bf);
+ return float2half(rf);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pdiv<Packet8h>(const Packet8h& a, const Packet8h& b) {
+ Packet8f af = half2float(a);
+ Packet8f bf = half2float(b);
+ Packet8f rf = pdiv(af, bf);
+ return float2half(rf);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pgather<Eigen::half, Packet8h>(const Eigen::half* from, Index stride)
+{
+ const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(from[0*stride]);
+ const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(from[1*stride]);
+ const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(from[2*stride]);
+ const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(from[3*stride]);
+ const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(from[4*stride]);
+ const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(from[5*stride]);
+ const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(from[6*stride]);
+ const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(from[7*stride]);
+ return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
+}
+
+template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet8h>(Eigen::half* to, const Packet8h& from, Index stride)
+{
+ EIGEN_ALIGN32 Eigen::half aux[8];
+ pstore(aux, from);
+ to[stride*0] = aux[0];
+ to[stride*1] = aux[1];
+ to[stride*2] = aux[2];
+ to[stride*3] = aux[3];
+ to[stride*4] = aux[4];
+ to[stride*5] = aux[5];
+ to[stride*6] = aux[6];
+ to[stride*7] = aux[7];
+}
+
+template<> EIGEN_STRONG_INLINE Eigen::half predux<Packet8h>(const Packet8h& a) {
+ Packet8f af = half2float(a);
+ float reduced = predux<Packet8f>(af);
+ return Eigen::half(reduced);
+}
+
+template<> EIGEN_STRONG_INLINE Eigen::half predux_max<Packet8h>(const Packet8h& a) {
+ Packet8f af = half2float(a);
+ float reduced = predux_max<Packet8f>(af);
+ return Eigen::half(reduced);
+}
+
+template<> EIGEN_STRONG_INLINE Eigen::half predux_min<Packet8h>(const Packet8h& a) {
+ Packet8f af = half2float(a);
+ float reduced = predux_min<Packet8f>(af);
+ return Eigen::half(reduced);
+}
+
+template<> EIGEN_STRONG_INLINE Eigen::half predux_mul<Packet8h>(const Packet8h& a) {
+ Packet8f af = half2float(a);
+ float reduced = predux_mul<Packet8f>(af);
+ return Eigen::half(reduced);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h preverse(const Packet8h& a)
+{
+ __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1);
+ return _mm_shuffle_epi8(a,m);
+}
+
+EIGEN_STRONG_INLINE void
+ptranspose(PacketBlock<Packet8h,8>& kernel) {
+ __m128i a = kernel.packet[0];
+ __m128i b = kernel.packet[1];
+ __m128i c = kernel.packet[2];
+ __m128i d = kernel.packet[3];
+ __m128i e = kernel.packet[4];
+ __m128i f = kernel.packet[5];
+ __m128i g = kernel.packet[6];
+ __m128i h = kernel.packet[7];
+
+ __m128i a03b03 = _mm_unpacklo_epi16(a, b);
+ __m128i c03d03 = _mm_unpacklo_epi16(c, d);
+ __m128i e03f03 = _mm_unpacklo_epi16(e, f);
+ __m128i g03h03 = _mm_unpacklo_epi16(g, h);
+ __m128i a47b47 = _mm_unpackhi_epi16(a, b);
+ __m128i c47d47 = _mm_unpackhi_epi16(c, d);
+ __m128i e47f47 = _mm_unpackhi_epi16(e, f);
+ __m128i g47h47 = _mm_unpackhi_epi16(g, h);
+
+ __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03);
+ __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03);
+ __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03);
+ __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03);
+ __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47);
+ __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47);
+ __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47);
+ __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47);
+
+ __m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01);
+ __m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01);
+ __m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23);
+ __m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23);
+ __m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45);
+ __m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45);
+ __m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67);
+ __m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67);
+
+ kernel.packet[0] = a0b0c0d0e0f0g0h0;
+ kernel.packet[1] = a1b1c1d1e1f1g1h1;
+ kernel.packet[2] = a2b2c2d2e2f2g2h2;
+ kernel.packet[3] = a3b3c3d3e3f3g3h3;
+ kernel.packet[4] = a4b4c4d4e4f4g4h4;
+ kernel.packet[5] = a5b5c5d5e5f5g5h5;
+ kernel.packet[6] = a6b6c6d6e6f6g6h6;
+ kernel.packet[7] = a7b7c7d7e7f7g7h7;
+}
+
+EIGEN_STRONG_INLINE void
+ptranspose(PacketBlock<Packet8h,4>& kernel) {
+ EIGEN_ALIGN32 Eigen::half in[4][8];
+ pstore<Eigen::half>(in[0], kernel.packet[0]);
+ pstore<Eigen::half>(in[1], kernel.packet[1]);
+ pstore<Eigen::half>(in[2], kernel.packet[2]);
+ pstore<Eigen::half>(in[3], kernel.packet[3]);
+
+ EIGEN_ALIGN32 Eigen::half out[4][8];
+
+ for (int i = 0; i < 4; ++i) {
+ for (int j = 0; j < 4; ++j) {
+ out[i][j] = in[j][2*i];
+ }
+ for (int j = 0; j < 4; ++j) {
+ out[i][j+4] = in[j][2*i+1];
+ }
+ }
+
+ kernel.packet[0] = pload<Packet8h>(out[0]);
+ kernel.packet[1] = pload<Packet8h>(out[1]);
+ kernel.packet[2] = pload<Packet8h>(out[2]);
+ kernel.packet[3] = pload<Packet8h>(out[3]);
+}
+
+// BFloat16 implementation.
+
+EIGEN_STRONG_INLINE Packet8f Bf16ToF32(const Packet8bf& a) {
+#ifdef EIGEN_VECTORIZE_AVX2
+ __m256i extend = _mm256_cvtepu16_epi32(a);
+ return _mm256_castsi256_ps(_mm256_slli_epi32(extend, 16));
+#else
+ __m128i lo = _mm_cvtepu16_epi32(a);
+ __m128i hi = _mm_cvtepu16_epi32(_mm_srli_si128(a, 8));
+ __m128i lo_shift = _mm_slli_epi32(lo, 16);
+ __m128i hi_shift = _mm_slli_epi32(hi, 16);
+ return _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo_shift), hi_shift, 1));
+#endif
+}
+
+// Convert float to bfloat16 according to round-to-nearest-even/denormals algorithm.
+EIGEN_STRONG_INLINE Packet8bf F32ToBf16(const Packet8f& a) {
+ Packet8bf r;
+
+ __m256i input = _mm256_castps_si256(a);
+
+#ifdef EIGEN_VECTORIZE_AVX2
+ // uint32_t lsb = (input >> 16);
+ __m256i t = _mm256_srli_epi32(input, 16);
+ // uint32_t lsb = lsb & 1;
+ t = _mm256_and_si256(t, _mm256_set1_epi32(1));
+ // uint32_t rounding_bias = 0x7fff + lsb;
+ t = _mm256_add_epi32(t, _mm256_set1_epi32(0x7fff));
+ // input += rounding_bias;
+ t = _mm256_add_epi32(t, input);
+ // input = input >> 16;
+ t = _mm256_srli_epi32(t, 16);
+ // Check NaN before converting back to bf16
+ __m256 mask = _mm256_cmp_ps(a, a, _CMP_ORD_Q);
+ __m256i nan = _mm256_set1_epi32(0x7fc0);
+ t = _mm256_blendv_epi8(nan, t, _mm256_castps_si256(mask));
+ // output = numext::bit_cast<uint16_t>(input);
+ return _mm_packus_epi32(_mm256_extractf128_si256(t, 0),
+ _mm256_extractf128_si256(t, 1));
+#else
+ // uint32_t lsb = (input >> 16);
+ __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(input, 0), 16);
+ __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(input, 1), 16);
+ // uint32_t lsb = lsb & 1;
+ lo = _mm_and_si128(lo, _mm_set1_epi32(1));
+ hi = _mm_and_si128(hi, _mm_set1_epi32(1));
+ // uint32_t rounding_bias = 0x7fff + lsb;
+ lo = _mm_add_epi32(lo, _mm_set1_epi32(0x7fff));
+ hi = _mm_add_epi32(hi, _mm_set1_epi32(0x7fff));
+ // input += rounding_bias;
+ lo = _mm_add_epi32(lo, _mm256_extractf128_si256(input, 0));
+ hi = _mm_add_epi32(hi, _mm256_extractf128_si256(input, 1));
+ // input = input >> 16;
+ lo = _mm_srli_epi32(lo, 16);
+ hi = _mm_srli_epi32(hi, 16);
+ // Check NaN before converting back to bf16
+ __m256 mask = _mm256_cmp_ps(a, a, _CMP_ORD_Q);
+ __m128i nan = _mm_set1_epi32(0x7fc0);
+ lo = _mm_blendv_epi8(nan, lo, _mm_castps_si128(_mm256_castps256_ps128(mask)));
+ hi = _mm_blendv_epi8(nan, hi, _mm_castps_si128(_mm256_extractf128_ps(mask, 1)));
+ // output = numext::bit_cast<uint16_t>(input);
+ return _mm_packus_epi32(lo, hi);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pset1<Packet8bf>(const bfloat16& from) {
+ return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from));
+}
+
+template<> EIGEN_STRONG_INLINE bfloat16 pfirst<Packet8bf>(const Packet8bf& from) {
+ return numext::bit_cast<bfloat16>(static_cast<numext::uint16_t>(_mm_extract_epi16(from, 0)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pload<Packet8bf>(const bfloat16* from) {
+ return _mm_load_si128(reinterpret_cast<const __m128i*>(from));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf ploadu<Packet8bf>(const bfloat16* from) {
+ return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
+}
+
+template<> EIGEN_STRONG_INLINE void pstore<bfloat16>(bfloat16* to, const Packet8bf& from) {
+ _mm_store_si128(reinterpret_cast<__m128i*>(to), from);
+}
+
+template<> EIGEN_STRONG_INLINE void pstoreu<bfloat16>(bfloat16* to, const Packet8bf& from) {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf
+ploaddup<Packet8bf>(const bfloat16* from) {
+ const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
+ const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
+ const numext::uint16_t c = numext::bit_cast<numext::uint16_t>(from[2]);
+ const numext::uint16_t d = numext::bit_cast<numext::uint16_t>(from[3]);
+ return _mm_set_epi16(d, d, c, c, b, b, a, a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf
+ploadquad<Packet8bf>(const bfloat16* from) {
+ const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
+ const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
+ return _mm_set_epi16(b, b, b, b, a, a, a, a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf ptrue(const Packet8bf& a) {
+ return _mm_cmpeq_epi32(a, a);
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pabs(const Packet8bf& a) {
+ const __m128i sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
+ return _mm_andnot_si128(sign_mask, a);
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pmin<Packet8bf>(const Packet8bf& a,
+ const Packet8bf& b) {
+ return F32ToBf16(pmin<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pmax<Packet8bf>(const Packet8bf& a,
+ const Packet8bf& b) {
+ return F32ToBf16(pmax<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf plset<Packet8bf>(const bfloat16& a) {
+ return F32ToBf16(plset<Packet8f>(static_cast<float>(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf por(const Packet8bf& a,const Packet8bf& b) {
+ return _mm_or_si128(a,b);
+}
+template<> EIGEN_STRONG_INLINE Packet8bf pxor(const Packet8bf& a,const Packet8bf& b) {
+ return _mm_xor_si128(a,b);
+}
+template<> EIGEN_STRONG_INLINE Packet8bf pand(const Packet8bf& a,const Packet8bf& b) {
+ return _mm_and_si128(a,b);
+}
+template<> EIGEN_STRONG_INLINE Packet8bf pandnot(const Packet8bf& a,const Packet8bf& b) {
+ return _mm_andnot_si128(b,a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pselect(const Packet8bf& mask, const Packet8bf& a, const Packet8bf& b) {
+ return _mm_blendv_epi8(b, a, mask);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pround<Packet8bf>(const Packet8bf& a)
+{
+ return F32ToBf16(pround<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf print<Packet8bf>(const Packet8bf& a) {
+ return F32ToBf16(print<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pceil<Packet8bf>(const Packet8bf& a) {
+ return F32ToBf16(pceil<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pfloor<Packet8bf>(const Packet8bf& a) {
+ return F32ToBf16(pfloor<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pcmp_eq(const Packet8bf& a,const Packet8bf& b) {
+ return Pack16To8(pcmp_eq(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pcmp_le(const Packet8bf& a,const Packet8bf& b) {
+ return Pack16To8(pcmp_le(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt(const Packet8bf& a,const Packet8bf& b) {
+ return Pack16To8(pcmp_lt(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt_or_nan(const Packet8bf& a,const Packet8bf& b) {
+ return Pack16To8(pcmp_lt_or_nan(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pconj(const Packet8bf& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE Packet8bf pnegate(const Packet8bf& a) {
+ Packet8bf sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
+ return _mm_xor_si128(a, sign_mask);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf padd<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
+ return F32ToBf16(padd<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf psub<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
+ return F32ToBf16(psub<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pmul<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
+ return F32ToBf16(pmul<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pdiv<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
+ return F32ToBf16(pdiv<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
+}
+
+
+template<> EIGEN_STRONG_INLINE Packet8bf pgather<bfloat16, Packet8bf>(const bfloat16* from, Index stride)
+{
+ const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(from[0*stride]);
+ const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(from[1*stride]);
+ const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(from[2*stride]);
+ const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(from[3*stride]);
+ const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(from[4*stride]);
+ const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(from[5*stride]);
+ const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(from[6*stride]);
+ const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(from[7*stride]);
+ return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
+}
+
+template<> EIGEN_STRONG_INLINE void pscatter<bfloat16, Packet8bf>(bfloat16* to, const Packet8bf& from, Index stride)
+{
+ EIGEN_ALIGN32 bfloat16 aux[8];
+ pstore(aux, from);
+ to[stride*0] = aux[0];
+ to[stride*1] = aux[1];
+ to[stride*2] = aux[2];
+ to[stride*3] = aux[3];
+ to[stride*4] = aux[4];
+ to[stride*5] = aux[5];
+ to[stride*6] = aux[6];
+ to[stride*7] = aux[7];
+}
+
+template<> EIGEN_STRONG_INLINE bfloat16 predux<Packet8bf>(const Packet8bf& a) {
+ return static_cast<bfloat16>(predux<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE bfloat16 predux_max<Packet8bf>(const Packet8bf& a) {
+ return static_cast<bfloat16>(predux_max<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE bfloat16 predux_min<Packet8bf>(const Packet8bf& a) {
+ return static_cast<bfloat16>(predux_min<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE bfloat16 predux_mul<Packet8bf>(const Packet8bf& a) {
+ return static_cast<bfloat16>(predux_mul<Packet8f>(Bf16ToF32(a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf preverse(const Packet8bf& a)
+{
+ __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1);
+ return _mm_shuffle_epi8(a,m);
+}
+
+EIGEN_STRONG_INLINE void
+ptranspose(PacketBlock<Packet8bf,8>& kernel) {
+ __m128i a = kernel.packet[0];
+ __m128i b = kernel.packet[1];
+ __m128i c = kernel.packet[2];
+ __m128i d = kernel.packet[3];
+ __m128i e = kernel.packet[4];
+ __m128i f = kernel.packet[5];
+ __m128i g = kernel.packet[6];
+ __m128i h = kernel.packet[7];
+
+ __m128i a03b03 = _mm_unpacklo_epi16(a, b);
+ __m128i c03d03 = _mm_unpacklo_epi16(c, d);
+ __m128i e03f03 = _mm_unpacklo_epi16(e, f);
+ __m128i g03h03 = _mm_unpacklo_epi16(g, h);
+ __m128i a47b47 = _mm_unpackhi_epi16(a, b);
+ __m128i c47d47 = _mm_unpackhi_epi16(c, d);
+ __m128i e47f47 = _mm_unpackhi_epi16(e, f);
+ __m128i g47h47 = _mm_unpackhi_epi16(g, h);
+
+ __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03);
+ __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03);
+ __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03);
+ __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03);
+ __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47);
+ __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47);
+ __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47);
+ __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47);
+
+ kernel.packet[0] = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01);
+ kernel.packet[1] = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01);
+ kernel.packet[2] = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23);
+ kernel.packet[3] = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23);
+ kernel.packet[4] = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45);
+ kernel.packet[5] = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45);
+ kernel.packet[6] = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67);
+ kernel.packet[7] = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67);
+}
+
+EIGEN_STRONG_INLINE void
+ptranspose(PacketBlock<Packet8bf,4>& kernel) {
+ __m128i a = kernel.packet[0];
+ __m128i b = kernel.packet[1];
+ __m128i c = kernel.packet[2];
+ __m128i d = kernel.packet[3];
+
+ __m128i ab_03 = _mm_unpacklo_epi16(a, b);
+ __m128i cd_03 = _mm_unpacklo_epi16(c, d);
+ __m128i ab_47 = _mm_unpackhi_epi16(a, b);
+ __m128i cd_47 = _mm_unpackhi_epi16(c, d);
+
+ kernel.packet[0] = _mm_unpacklo_epi32(ab_03, cd_03);
+ kernel.packet[1] = _mm_unpackhi_epi32(ab_03, cd_03);
+ kernel.packet[2] = _mm_unpacklo_epi32(ab_47, cd_47);
+ kernel.packet[3] = _mm_unpackhi_epi32(ab_47, cd_47);
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_PACKET_MATH_AVX_H
diff --git a/engine-ocean/Eigen/src/Core/arch/AVX/TypeCasting.h b/engine-ocean/Eigen/src/Core/arch/AVX/TypeCasting.h
new file mode 100644
index 0000000..d507fb6
--- /dev/null
+++ b/engine-ocean/Eigen/src/Core/arch/AVX/TypeCasting.h
@@ -0,0 +1,115 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TYPE_CASTING_AVX_H
+#define EIGEN_TYPE_CASTING_AVX_H
+
+namespace Eigen {
+
+namespace internal {
+
+// For now we use SSE to handle integers, so we can't use AVX instructions to cast
+// from int to float
+template <>
+struct type_casting_traits<float, int> {
+ enum {
+ VectorizedCast = 0,
+ SrcCoeffRatio = 1,
+ TgtCoeffRatio = 1
+ };
+};
+
+template <>
+struct type_casting_traits<int, float> {
+ enum {
+ VectorizedCast = 0,
+ SrcCoeffRatio = 1,
+ TgtCoeffRatio = 1
+ };
+};
+
+
+#ifndef EIGEN_VECTORIZE_AVX512
+
+template <>
+struct type_casting_traits<Eigen::half, float> {
+ enum {
+ VectorizedCast = 1,
+ SrcCoeffRatio = 1,
+ TgtCoeffRatio = 1
+ };
+};
+
+
+template <>
+struct type_casting_traits<float, Eigen::half> {
+ enum {
+ VectorizedCast = 1,
+ SrcCoeffRatio = 1,
+ TgtCoeffRatio = 1
+ };
+};
+
+template <>
+struct type_casting_traits<bfloat16, float> {
+ enum {
+ VectorizedCast = 1,
+ SrcCoeffRatio = 1,
+ TgtCoeffRatio = 1
+ };
+};
+
+template <>
+struct type_casting_traits<float, bfloat16> {
+ enum {
+ VectorizedCast = 1,
+ SrcCoeffRatio = 1,
+ TgtCoeffRatio = 1
+ };
+};
+
+#endif // EIGEN_VECTORIZE_AVX512
+
+template<> EIGEN_STRONG_INLINE Packet8i pcast<Packet8f, Packet8i>(const Packet8f& a) {
+ return _mm256_cvttps_epi32(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pcast<Packet8i, Packet8f>(const Packet8i& a) {
+ return _mm256_cvtepi32_ps(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8i preinterpret<Packet8i,Packet8f>(const Packet8f& a) {
+ return _mm256_castps_si256(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f preinterpret<Packet8f,Packet8i>(const Packet8i& a) {
+ return _mm256_castsi256_ps(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pcast<Packet8h, Packet8f>(const Packet8h& a) {
+ return half2float(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8f pcast<Packet8bf, Packet8f>(const Packet8bf& a) {
+ return Bf16ToF32(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8h pcast<Packet8f, Packet8h>(const Packet8f& a) {
+ return float2half(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet8bf pcast<Packet8f, Packet8bf>(const Packet8f& a) {
+ return F32ToBf16(a);
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TYPE_CASTING_AVX_H