summaryrefslogtreecommitdiff
path: root/engine-ocean/Eigen/src/Core/arch/SSE/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'engine-ocean/Eigen/src/Core/arch/SSE/MathFunctions.h')
-rw-r--r--engine-ocean/Eigen/src/Core/arch/SSE/MathFunctions.h199
1 files changed, 199 insertions, 0 deletions
diff --git a/engine-ocean/Eigen/src/Core/arch/SSE/MathFunctions.h b/engine-ocean/Eigen/src/Core/arch/SSE/MathFunctions.h
new file mode 100644
index 0000000..8736d0d
--- /dev/null
+++ b/engine-ocean/Eigen/src/Core/arch/SSE/MathFunctions.h
@@ -0,0 +1,199 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2007 Julien Pommier
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/* The sin and cos and functions of this file come from
+ * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
+ */
+
+#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
+#define EIGEN_MATH_FUNCTIONS_SSE_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f plog<Packet4f>(const Packet4f& _x) {
+ return plog_float(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet2d plog<Packet2d>(const Packet2d& _x) {
+ return plog_double(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f plog2<Packet4f>(const Packet4f& _x) {
+ return plog2_float(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet2d plog2<Packet2d>(const Packet2d& _x) {
+ return plog2_double(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f plog1p<Packet4f>(const Packet4f& _x) {
+ return generic_plog1p(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f pexpm1<Packet4f>(const Packet4f& _x) {
+ return generic_expm1(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f pexp<Packet4f>(const Packet4f& _x)
+{
+ return pexp_float(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet2d pexp<Packet2d>(const Packet2d& x)
+{
+ return pexp_double(x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f psin<Packet4f>(const Packet4f& _x)
+{
+ return psin_float(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f pcos<Packet4f>(const Packet4f& _x)
+{
+ return pcos_float(_x);
+}
+
+#if EIGEN_FAST_MATH
+
+// Functions for sqrt.
+// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
+// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
+// exact solution. It does not handle +inf, or denormalized numbers correctly.
+// The main advantage of this approach is not just speed, but also the fact that
+// it can be inlined and pipelined with other computations, further reducing its
+// effective latency. This is similar to Quake3's fast inverse square root.
+// For detail see here: http://www.beyond3d.com/content/articles/8/
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f psqrt<Packet4f>(const Packet4f& _x)
+{
+ Packet4f minus_half_x = pmul(_x, pset1<Packet4f>(-0.5f));
+ Packet4f denormal_mask = pandnot(
+ pcmp_lt(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())),
+ pcmp_lt(_x, pzero(_x)));
+
+ // Compute approximate reciprocal sqrt.
+ Packet4f x = _mm_rsqrt_ps(_x);
+ // Do a single step of Newton's iteration.
+ x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1<Packet4f>(1.5f)));
+ // Flush results for denormals to zero.
+ return pandnot(pmul(_x,x), denormal_mask);
+}
+
+#else
+
+template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
+
+#endif
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet16b psqrt<Packet16b>(const Packet16b& x) { return x; }
+
+#if EIGEN_FAST_MATH
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
+ _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f);
+ _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f);
+ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000u);
+ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000u);
+
+ Packet4f neg_half = pmul(_x, p4f_minus_half);
+
+ // Identity infinite, zero, negative and denormal arguments.
+ Packet4f lt_min_mask = _mm_cmplt_ps(_x, p4f_flt_min);
+ Packet4f inf_mask = _mm_cmpeq_ps(_x, p4f_inf);
+ Packet4f not_normal_finite_mask = _mm_or_ps(lt_min_mask, inf_mask);
+
+ // Compute an approximate result using the rsqrt intrinsic.
+ Packet4f y_approx = _mm_rsqrt_ps(_x);
+
+ // Do a single step of Newton-Raphson iteration to improve the approximation.
+ // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
+ // It is essential to evaluate the inner term like this because forming
+ // y_n^2 may over- or underflow.
+ Packet4f y_newton = pmul(
+ y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p4f_one_point_five));
+
+ // Select the result of the Newton-Raphson step for positive normal arguments.
+ // For other arguments, choose the output of the intrinsic. This will
+ // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
+ // x is zero or a positive denormalized float (equivalent to flushing positive
+ // denormalized inputs to zero).
+ return pselect<Packet4f>(not_normal_finite_mask, y_approx, y_newton);
+}
+
+#else
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f prsqrt<Packet4f>(const Packet4f& x) {
+ // Unfortunately we can't use the much faster mm_rsqrt_ps since it only provides an approximation.
+ return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x));
+}
+
+#endif
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet2d prsqrt<Packet2d>(const Packet2d& x) {
+ return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x));
+}
+
+// Hyperbolic Tangent function.
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
+ptanh<Packet4f>(const Packet4f& x) {
+ return internal::generic_fast_tanh_float(x);
+}
+
+} // end namespace internal
+
+namespace numext {
+
+template<>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float sqrt(const float &x)
+{
+ return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x))));
+}
+
+template<>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double sqrt(const double &x)
+{
+#if EIGEN_COMP_GNUC_STRICT
+ // This works around a GCC bug generating poor code for _mm_sqrt_pd
+ // See https://gitlab.com/libeigen/eigen/commit/8dca9f97e38970
+ return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x))));
+#else
+ return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x))));
+#endif
+}
+
+} // end namespace numex
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATH_FUNCTIONS_SSE_H