1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
#include <iostream>
#include "raytracer/raytracer.h"
glm::vec4 RayTracer::illuminationFromDirectionalLight(
const SceneLightData &light,
glm::vec4 intersectionWorld,
glm::vec4 normalWorld,
glm::vec4 directionToCamera,
const RenderShapeData &shape,
const RayTraceScene &scene
)
{
// define direction and distance of directional light
auto directionFromIntersectionToLight = - light.dir;
directionFromIntersectionToLight = glm::normalize(directionFromIntersectionToLight);
float distanceToLight = FINF; // directional light infinitely far away
float kd = scene.getGlobalData().kd;
float ks = scene.getGlobalData().ks;
auto material = shape.primitive.material;
glm::vec4 illumination(0, 0, 0, 1.f);
// calculate diffuse term
auto dotDiffuse = glm::dot(normalWorld, directionFromIntersectionToLight);
if (dotDiffuse < 0) {
return illumination;
}
// add the diffuse
auto diffuse = (kd * material.cDiffuse);
illumination += light.color * dotDiffuse * diffuse;
// if the obj has no specular, return
if (material.cSpecular == glm::vec4(0.f)) {
return illumination;
}
// get the light reflection vector
auto reflectedDirOverNormal = glm::normalize(glm::reflect(directionFromIntersectionToLight, normalWorld));
// calculate specular term
auto dotSpecular = glm::dot(reflectedDirOverNormal, -directionToCamera);
if (dotSpecular > 0) {
auto toPow = std::pow(dotSpecular, material.shininess);
illumination += light.color * toPow * (ks * material.cSpecular);
}
return illumination;
}
// Calculates the RGBA of a pixel from intersection infomation and globally-defined coefficients
glm::vec4 RayTracer::illuminatePixel(
glm::vec4 intersectionWorld,
glm::vec4 normalWorld,
glm::vec4 directionToCamera,
const RenderShapeData& shape,
const RayTraceScene &scene,
int depth)
{
// Normalizing directions
normalWorld = glm::normalize(normalWorld);
directionToCamera = glm::normalize(directionToCamera);
// to be summed then returned
glm::vec4 illumination(0, 0, 0, 1.f);
// add the ambient term
float ka = scene.getGlobalData().ka;
illumination += ka*shape.primitive.material.cAmbient;
for (const SceneLightData &light : scene.getLights()) {
switch (light.type) {
case LightType::LIGHT_POINT:
continue;
case LightType::LIGHT_DIRECTIONAL:
illumination +=
illuminationFromDirectionalLight(light, intersectionWorld, normalWorld, directionToCamera, shape, scene);
continue;
case LightType::LIGHT_SPOT:
continue;
case LightType::LIGHT_AREA:
continue;
default:
continue;
}
}
// auto incidentDir = -directionToCamera;
// recursive raytracing for the reflection and refraction (see reflect.cpp)
// illumination += refract(intersectionWorld, normalWorld, incidentDir, shape, scene, depth + 1);
// illumination += reflect(intersectionWorld, normalWorld, incidentDir, shape, scene, depth + 1);
return illumination;
}
|